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Abstract The nonlinear energy sink (NES) is a prac-
tical passive device for vibration control that has gained
significant attention due to its ability to mitigate reso-
nant vibrations across a wide frequency range. Con-
ventional NES designs typically employ a hardening
restoring force, which enables broad operational fre-
quency coverage but faces limitations in the operational
amplitude range, also due to the emergence of isolated
resonance curves (IRCs). This study investigates a soft-
ening NES, where the restoring force characteristic is
modeled as a saturating function. Analytical results
demonstrate that the softening NES retains the benefi-
cial amplitude saturation effect and stronglymodulated
response (SMR) observed in hardening NESs, while
significantly expanding the range over which SMR
occurs. Furthermore, the IRCs in the softening NES
appear on the right of the resonance peak, unlike the
leftward location in hardening NESs, making it advan-
tageous for applications where excitation frequency
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ramps up. Notably, IRCs in the softening NES are less
detrimental as they result in smaller amplitude jumps.
We also identify parameter values that suppress the for-
mationof IRCswithout compromising theperformance
of the NES, providing a practical advantage over con-
ventional designs. Despite these promising findings,
the practical realization of the softening NES remains
an open challenge, which will be the focus of future
research. Overall, the softening NES exhibits superior
performance compared to the hardening NES, present-
ing an effective alternative for vibration suppression in
various engineering applications.

Keywords Nonlinear energy sink · Isolated resonance
curve ·Detached resonant curve · Softening ·Dynamic
vibration absorber

1 Introduction

Vibration mitigation is a critical challenge in various
engineering systems, where excessive oscillations can
lead to structural fatigue, operational inefficiencies,
or even catastrophic failure. Among passive vibration
control devices, tunedmass dampers (TMDs) have long
been one of themost effective andwidely used tools [1–
3]. TMDs operate by adding a secondary mass-spring-
damper system tuned to the natural frequency of the
host structure, effectively counteracting resonant vibra-
tions through modal interaction. However, their appli-
cability is limited by their narrowoperational frequency
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range. This makes TMDs unsuitable for systems with
multiple dominant frequencies or those whose natu-
ral frequencies vary due to changing operational con-
ditions, such as temperature fluctuations or structural
degradation.

The nonlinear energy sink (NES) offers a valid alter-
native to TMDs, overcomingmany of these limitations.
Unlike TMDs, the NES employs a nonlinear restor-
ing force, which allows it to resonate across multi-
ple frequencies. This property gives the NES a much
broader operational frequency bandwidth. Over the
past two decades, the NES has been the subject of
extensive research, resulting in thousands of studies
[4] and numerous design variations [5,6]. Despite this
diversity, the most common NES configuration relies
on a purely cubic hardening restoring force, and its
dynamics have been studied under various loading con-
ditions, including transient [7,8], harmonic [9,10], self-
excited [11,12], parametric [13], and stochastic excita-
tions [14].

Under transient loading, theNESengages in targeted
energy transfer (TET), where vibrational energy from
the primary system is transferred to the NES and dis-
sipated [15]. In systems with multiple natural frequen-
cies, this energy transfer occurs sequentially through
the so-called resonance capture cascade (RCC), where
the NES tunes itself to each frequency in turn, enabling
effective mitigation of multi-modal vibrations [16–
18]. For self-excited oscillations, the NES has limited
impact on the stability of the system [19] but can sig-
nificantly reduce the amplitude of oscillations, thereby
improving operational performance [20].

Under harmonic excitation – which is the focus of
this study – the NES exhibits distinct regimes of oper-
ation depending on the amplitude of the excitation.
At low excitation levels, the NES remains practically
inactive, which is not a concern since small-amplitude
vibrations are generally not problematic. Beyond a crit-
ical energy threshold, the NES becomes active, causing
the vibration amplitude of the host system to saturate,
remaining nearly constant, even as the forcing ampli-
tude increases. This saturation effect is a hallmark of
the NES’s effectiveness in vibration control [21].

For excitation amplitudes near this threshold, the
NES transitions into a strongly modulated response
(SMR) regime, characterized by quasiperiodic motions
and continuous energy exchange between the host sys-
tem and the NES [22]. During SMR, the oscillation
amplitude of the host system remains comparable to the

saturation level, making it a favorable regime for vibra-
tion mitigation. However, as the excitation amplitude
increases further, isolated resonance curves (IRCs) are
triggered. These IRCs typically result in significantly
larger oscillation amplitudes in the host system, mark-
ing the upper limit of the NES’s effective operational
range. Beyond this point, any further increase in forc-
ing amplitude leads to an almost proportional increase
in the vibration amplitude of the host system, making
the NES ineffective.

IRCs are branches of periodic solutions that are dis-
connected from the main resonance branch in the fre-
quency response (FR) of a vibrating system. One of the
first studies about them dates back to 1955 [23] when
they were discovered in softening Duffing oscillators.
Although initially they were considered a relatively
exhotic phenomenon [24], later studies illustrated that
they are present in several dynamical systems, includ-
ing systems with hysteresis [25–27], systems subject
to nonlinear damping [28,29], systems with disconti-
nuities [30–32], in the case of sub- or super-harmonic
resonances [33–35], and in the presence of internal res-
onances [36,37].

IRCs’ topology makes them particularly elusive;
in fact, they are overlooked by standard continuation
techniques, both experimentally and numerically. Con-
versely, they can be identified through approximation
techniques, which transform the system’s dynamics
governing differential equations into a system of alge-
braic equations. This can be achieved through, e.g.,
multiple-scale techniques [38], averaging [29], or har-
monic balance [39]. Alternatively, techniques investi-
gating a system’s global dynamics can also help to iden-
tify IRCs [33,40].

IRCs are very common in nonlinear dynamic vibra-
tion absorbers [41,42], and in most cases detrimental,
as they are usually related to a small activation of the
vibration absorber, leading to large oscillations of the
primary system [39].

Referring to NESs, IRCs are ubiquitous. Typically,
an IRC coexists with a SMR [43]. Differently from
SMR, IRCs are usually associated with an almost neg-
ligible NES effectiveness [12]. This scenariomotivated
extensive research to develop methods for the elimina-
tion of IRCs. An obvious strategy consists of selecting
parameter values for which there are no IRCs, as done,
for example, in [42] exploiting singularity theory.How-
ever, this typically requires compromising theNESper-
formance. In [43], it was illustrated that an NES with a
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nonlinear damping characteristic eliminates the detri-
mental IRC without reducing its performance. A sim-
ilar approach was implemented in [44], where condi-
tions leading to detrimental IRCswere identified, high-
lighting that, in some cases, they are not.

Recently, a novel NES presenting a softening and
saturating restoring force function was developed [45].
This NES, besides exhibiting an inverted RCC (from
low to high frequency) when subject to shock vibra-
tions [45], canmitigate vibrations also at very low ener-
getic levels, as numerically demonstrated in [46,47],
and applied to a cantilever beam in [48], where a frac-
tional power characteristic describes the NES’s restor-
ing force function.

Although dynamic vibration absorbers with a purely
softening restoring force characteristic have never been
realized in practice, severalmechanismswith this prop-
erty exist, such as constant force [49,50] or constant
torque [51,52] devices. These systems, exhibiting a
softening and/or saturating force-displacement charac-
teristic, could be modified to serve as softening NESs.

This study investigates the performance of a soften-
ing NES to control harmonically excited oscillations
of a host system. The study is carried out analytically
by exploiting the complexification-averaging method,
which leads to an analytical expression of the slow
invariant manifold (SIM), later used for characterizing
the system dynamics. In particular, periodic motions,
SMRs, and IRCs are identified, and their relevance
to the NES performance is evaluated. Later, singular-
ity theory is used to identify parameter values where
IRCs are absent [44,53]. All results for the softening
NES are compared with a classical cubic hardening
NES. The rest of the paper is structured as follows. In
Sect. 2, the equations of motion are presented and non-
dimensionalized. Section3 derives the FRof the system
and SMR obtained from a complexification-averaging
procedure. Section4 investigates the IRCs. In Sect. 5,
the performance of hardening and softening NES are
compared, after which the conclusions are presented.

2 Equations of motion and nondimensionalization

The system under consideration is a nonlinear energy
sink coupled to a harmonically forced linear single
degree-of-freedom (DOF) host system, as illustrated
in Fig. 1a. The equations of motion (EOM) are:

mẍ + cẋ + kx + cna(ẋ − ẋna)

+ Fs(x − xna) = F cos(ωt)

mna ẍna + cna(ẋna − ẋ) + Fs(xna − x) = 0

(1)

wherem, c, k are the host system’smass, viscous damp-
ing and stiffness coefficients, and mna, cna, Fs(·) are
the NES’s mass, viscous damping and nonlinear stiff-
ness, respectively. x and xna mark the displacement of
the host system and the NES, respectively. A harmonic
load is applied to the host system with magnitude F
and frequency ω. The EOM are also valid for larger
dimensional systems, assuming no modal interactions
are present, where the coefficients refer to modal quan-
tities. Two stiffness characteristics (Fs(·)) are consid-
ered, the conventional hardening cubic stiffness and a
saturating stiffness, leading to softeningbehavior; these
are shown in Fig. 1b. The functions describing these
characteristics are:

Fs(z) =
{
knaz3

ksat arctan(ksz)
(2)

where kna is the coefficient of the hardening stiffness,
2ksat/π is the force level where the arctan saturates and
ks is the internal coefficient of the arctan. Around the
origin, the arctan is approximately linear with slope
ksatks.

To reduce the number of parameters to be studied,
the EOM in (1) are non-dimensionalized. Considering
the dimensionless time τ = ωnt and introducing the
relative absorber displacement (z = xna− x), the EOM
become:

x ′′ + εξ x ′ + x + ε
(
z′′ + x ′′) = εP cos(�τ)

ε
(
z′′ + x ′′) + εξnaz

′ + ε fs(z) = 0
(3)

where

ε = mna

m
, ξ = c

mnaωn
, ξna = cna

mnaωn
,

fs(z) = Fs(z)

mnaω2
n

,

P = F

ω2
nmna

, � = ω

ωn
, ′◦ = d◦

dτ
.

(4)

The nonlinear restoring forces are:

Fs = k3z
3 ⇒ fs = γ z3,

Fs = ksat arctan(ksz) ⇒ fs = κsat arctan(ksz) (5)
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Fig. 1 Mechanical system under stduy (a) and stiffness characteristic Fs(·) (b). The hardening stiffness is x3a while the saturating is
arctan(20xa)

where

γ = k3
mnaω2

n
, κsat = ksat

mnaω2
n

. (6)

The displacements are non-dimensionalized to x̄ and
z̄. The way of nondimensionalization depends on the
type of stiffness:

fs(z) = γ z3 ⇒ z̄ = √
γ z, x̄ = √

γ x ⇒ fs(z̄) = z̄3

fs(z) = κsat arctan(ksz) ⇒ z̄ = ksz,

x̄ = ksx ⇒ fs(z̄) = κ arctan(z̄)

(7)

where κ = κsatks = ω2
a/ω

2
n

κ is the squared ratio between the linearized natural
frequency of the absorber, ω2

a = ksatks/mna, and the
natural frequency of the host system. The dimension-
less equations of motion, both in time and displace-
ment, are:

x̄ ′′ + εξ x̄ ′ + x̄ + ε
(
z̄′′ + x̄ ′′) = ε P̄ cos(�τ)

ε
(
z̄′′ + x̄ ′′) + εξna z̄

′ + ε fs(z̄) = 0.
(8)

The expression of the dimensionless forcing amplitude
P̄ depends on the considered characteristic:

fs(z̄) = z̄3 ⇒ P̄ = √
γ P

fs(z) = κsat arctan(ksz) ⇒ P̄ = ksP.
(9)

In the next section, the frequency responses for both
NESs will be derived.

3 Averaging and frequency response

3.1 Complexification-averaging analysis

The complexification-averaging (CxA) method will be
used to obtain the frequency response, [54–56]. In this
procedure, a single vibration frequency (the forcing
frequency) is assumed in the displacements z̄ and x̄ .
Then, the vibrations are split into a fast and a slow part.
The slow part marks the amplitude modulation of the
vibration, while the fast part indicates the vibrations
themselves. Finally, the slow part is averaged over the
period of the assumed vibration frequency. The follow-
ing complex Manevitch variables [54] facilitate these
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steps:

2A(τ )ei�τ = x̄ − i
x̄ ′

�
, 2B(τ )ei�τ = z̄ − i

z̄′

�
(10)

where i = √−1 is the imaginary unit and A(τ ) and
B(τ ) are complex variables that contain the amplitude
and phase modulation. The original variables are then
substituted by the complex variables by:

x̄ = A(τ )ei�τ + A∗(τ )e�i�τ

z̄ = B(τ )ei�τ + B∗(τ )e�i�τ

x̄ ′ = i�
(
A(τ )ei�τ − A∗(τ )e�i�τ

)
(11)

z̄′ = i�
(
B(τ )ei�τ − B∗(τ )e�i�τ

)
x̄ ′′ + �2 x̄ = i2�A′ei�τ

z̄′′ + �2 z̄ = i2�B ′ei�τ

Substituting (12) into (8) and averaging over the fre-
quency � yields:

i2�A′ + iεξ�A +
(
1 − �2

)
A

+ ε
(
i2�B ′ − �2B + i2�A′ − �2A

)
= ε P̄

2
i2�B ′ + 2i�A′ − �2B − �2A

+ ξnai�B + BG(|B|) = 0

(12)

In steady state (A′ = B ′ = 0), (12) is reduced to:

iξ�A + σ A − �2B − �2A = P̄

2
−�2B − �2A + ξnai�B + BG(B, B∗) = 0

(13)

with εσ = 1 − �2. Next, the equations can be manip-
ulated to obtain two equations in a and b with A =
a eiα/2 and B = b eiβ/2. The first one is a SIM
between a and b:

�4a2 = b2
((

�2ξna

)2 +
(
�2 − G(b)

)2)
, (14)

while the second equation, relating b with P̄ , is

([(
�2 − σ

) (
G(b) − �2

)
+ �2ξnaξ + �4

]2
+�2

[
ξ

(
G(b) − �2

)
+

(
σ − �2

)
(ξna)

]2)
b2

=
(
�2 P̄

)2
.

(15)

The term G(b) depends on the type of stiffness char-
acteristic, according to the following equation [57]:

beiβG(b) = �

2π

∫ 2π
�

0
fs

(
bei(�τ+β) + be−i(�τ+β)

2

)

e−i�τdτ. (16)

This term is computed for the hardening and the
softening stiffness in Appendix A. The stability of the
steady state solutions of (13) and of the SIM are com-
puted in Appendices B and C.

3.2 Hardening stiffness fs(z̄) = z̄3

If fs(z̄) = z̄3 then G(b) = 3
4b

2. The SIM equations is
then

�4a2 = b2
(

(�ξna)
2 +

(
�2 − 3

4
b2

)2
)

(17)

and the relation between b and P̄ is given by

b6
(((

�2 − σ
) 3

4

)2

+ �2
(

ξ
3

4

)2
)

+ b4
(
2

((
�2 − σ

) 3

4

) (
−�2

(
�2 − σ

)

+�2ξnaξ + �4
)

+ 2�2
(

ξ
3

4

)

(ξ(−�2) +
(
σ − �2

)
ξna)

)
+ b2

(((
�2 − σ

) (
−�2

)
+ �2ξnaξ + �4

)2
+�2

(
ξ

(
−�2

)
+

(
σ − �2

)
ξna

)2)
− �4 P̄2 = 0.

(18)
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Fig. 2 Slow invariant manifolds for hardening (ξna = 0.2, � =
1) and softening NESs (ξna = 0.2, � = 1, κ = 5)

By identifying the maximum and minimum values
of the SIM, the saturation amplitude of the host system
under SMR can be estimated. These points are found
by derivation of (17) w.r.t. b2 and finding the roots
of the obtained equations. This leads to the following
equations for the maximum and minimum values:

b2± = 8

9
�2 ± 4

9

√
�4 − 3�2ξ2na

�4a2∓ = b2±

(
(�ξna)

2 +
(

�2 − 3

4
b2±

)2
)

.

(19)

The SIM and these points for the hardening stiff-
ness are visualized in red in Fig. 2. During SMR, the
amplitude of the host system modulates between a+
and a− while the NES relative displacement amplitude
modulates between b++ and b−−.

The points b++ and b−− are found by factoring the
SIM, (17), to its roots. In a+(a−), the SIM has dou-
ble root in b−(b+). The third root is then b++(b−−).
Equating the root factorization with the SIM equation
in a+ yields:

9

16

(
b2 − b2−

)2 (
b2 − b2++

)
= 9

16
b6 − 3�2b4 +

(
�4 + ξ2na�

2
)
b2 − �4a2+.

(20)

Expanding the left hand side and equating the b0 terms
on both sides gives:

b2++ = 16

9

�4a2+
b4−

. (21)

Through the same procedure b−− is computed:

b2−− = 16

9

�4a2−
b4+

. (22)

3.3 Softening stiffness fs(z̄) = κ arctan z̄

For the softening NES, fs(z̄) = κ arctan z̄, which leads

to G(b) = 2κ
√
b2+1−1
b2

. Accordingly, the SIM is:

�4a2 = b2

⎛
⎝(�ξna)

2 +
(

�2 − 2κ

√
b2 + 1 − 1

b2

)2
⎞
⎠ . (23)

Although G(b) contains a square root, the SIM and
Eq. (15), relating the absorber amplitude with the forc-
ing amplitude, can be transformed into a polynomial
equation through the substitution b2 + 1 = b̂2. Equa-
tion (15) becomes:

b̂3
(

�4
(
−σ + �2

)2 + �6ξ2 − 2
(
σ − �2

)
�4ξξna

+
(
σ − �2

)2
�2ξ2na

− 2�2
(
−σ + �2

) (
�4 + �2ξξna

)
+

(
�4 + �2ξξna

)2)

+ b̂2
(
− 2�6

(
−σ + �2

)
− 4κ�2

(
−σ + �2

)2
+ �4

(
−σ + �2

)2 − 4κ�4ξ2 + �6ξ2

+ 4κ
(
σ − �2

)
�2ξξna − 2

(
σ − �2

)
�4ξξna

− 2�4
(
−σ + �2

)
ξξna +

(
σ − �2

)2
�2ξ2na

+ 2�4
(
�4 + �2ξξna

)
+ 4κ

(
−σ + �2

)
(
�4 + �2ξξna

)
+ 2�2ξξna

(
�4 + �2ξξna

)
−

(
�4 + �2ξξna

)2 )
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+ b̂

(
�8 + 4κ�4

(
−σ + �2

)
+ 4κ2

(
−σ + �2

)2
− �4

(
−σ + �2

)2 + 4κ2�2ξ2 − �6ξ2

+ 2
(
σ − �2

)
�4ξξna + 2�6ξξna

+ 4κ�2
(
−σ + �2

)
ξξna

−
(
σ − �2

)2
�2ξ2na + �4ξ2ξ2na

− 2�4
(
�4 + �2ξξna

)
− 4κ

(
−σ + �2

)
(
�4 + �2ξξna

)
+ 2�2

(
−σ + �2

) (
�4 + �2ξξna

)
− 2�2ξξna

(
�4 + �2ξξna

)
− �4 P̄2

)

− �4 P̄2 − �8 − 4κ�4
(
−σ + �2

)
+ 2�6

(
−σ + �2

)
− 4κ2

(
−σ + �2

)2
+ 4κ�2

(
−σ + �2

)2
− �4

(
−σ + �2

)2 − 4κ2�2ξ2 + 4κ�4ξ2 − �6ξ2

− 4κ
(
σ − �2

)
�2ξξna + 2

(
σ − �2

)
�4ξξna

− 2�6ξξna − 4κ�2
(
−σ + �2

)
ξξna

+ 2�4
(
−σ + �2

)
ξξna −

(
σ − �2

)2
�2ξ2na

− �4ξ2ξ2na = 0. (24)

Only the solutions where b̂ > 1 are kept, such that
b > 0 and

√
b2 + 1 is real.

The maximum and minimum of the SIM are found
by deriving (23) w.r.t. b̂, obtaining

b̂3
(
�4 + �2ξ2na

)
+ b̂2

(
2κ�2 + 2�4 + 2�2ξ2na

)
+ b̂

(
−4κ�2 + �4 + �2ξna

)
+ 4κ2 − 2κ�2 = 0. (25)

Considering that b2± + 1 = b̂2±, a2∓ is computed as:

�4a2∓ = b2±

⎛
⎜⎝(�ξna)

2 +
⎛
⎝�2 − 2κ

√
b2± + 1 − 1

b2±

⎞
⎠

2⎞⎟⎠ . (26)

The SIM and these points for the softening NES are
visualized in black in Fig. 2.

To compute b++, Eq. (23) is expanded and equated
to factoring by roots:

b̂3
(
�2ξ2na + �4

)
+ b̂2

(
�2ξ2na + �4 − 4κ�2

)
+ b̂

(
4κ2 −

(
1 − a2+

)
�4 − �2ξ2na

)
4κ�2 − 4κ2

(
1 − a2+

)
�4 − 4κ2 − �2ξ2na

=
(
�2ξ2na + �4

) (
b̂ − b̂−

)2 (
b̂ − b̂++

)
.

(27)

Expanding the right-hand side and equating the b̂0

terms:

b̂++ = 4κ�2 − 4κ2(1 − a2+)�4 − 4κ2 − �2ξ2na

b̂2−
(
�2ξ2na + �4

)
(28)

and similarly, b−− is computed as:

b̂−− = 4κ�2 − 4κ2(1 − a2−)�4 − 4κ2 − �2ξ2na

b̂2+
(
�2ξ2na + �4

)
(29)

3.4 Frequency responses

Frequency responses (FRs) are computed by fixing the
forcing amplitude P̄ and solving Eq. (15) to obtain
the NES relative displacement b as a function of the
excitation frequency �. The corresponding host sys-
tem amplitude a is found through the SIM equation
(14). The polynomial forms for the two NESs (18) and
(24) allow for a quick computation of the FRs. FRs for
several forcing levels, for the hardening and softening
stiffness NESs, are depicted in Figs. 3 and 4, respec-
tively. The thick full and thick dashed lines represent
the stable and unstable solutions of the FR. The thin
dashed-dotted lines indicate the host system amplitude
if no NES were present. Finally, the dotted lines mark
the points of interest on the SIM, related to its maxima
and minima, as indicated in the figure.

For bothNES types, the FRof the host systemampli-
tude a folds around the a+-line, effectively leading to a
saturation effect. Despite the increase in force, the host
system’s amplitude does not go above this line. How-
ever, this saturation comes at a cost, as IRCs appear
to the left (hardening stiffness NES) or right (softening
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stiffness NES) of the original resonance frequency. The
analysis of the IRCs is presented in Sect. 4.

The FRs of the hardening and softening stiffness
cannot be compared directly as the values for a and b
differ by almost a factor of 10. This is caused by the dif-
ferent scaling in the nondimensionalization procedure,
as explained by Eq. (7). As P̄ uses the same scaling,
it is more suitable to compare the amplification a/P̄
and b/P̄ , which is illustrated in Fig. 5. For the cho-
sen forcing levels, the amplitude saturation near res-
onance is similar for both NESs. The hardening NES
shows an isola, making the softening NES seem like
a better choice. However, different forcing amplitude
valuesmight lead to different results; therefore, no gen-
eral conclusion can be drawn with respect to the two
NESs comparative performance at this stage. A more
thorough comparison of the absorbers’ performance is
provided in Sect. 5.

3.5 Strongly modulated response

The FRs were computed through the CxA procedure.
Previous studies [10,57] already illustrated the accu-
racy of the results for the hardening stiffness NES.
However, an important phenomenon is not shown by
the analytically obtained FR. Around the resonance
frequency, the FR presents a branch of unstable solu-
tions, marked by a couple of Nemark-Sacker bifurca-
tions. In this case, the system exhibits a quasi-periodic
statewhere vibration energy is continuously exchanged
between the host system and the NES. In the con-
text of NESs, this motion is usually referred to as
strongly modulated response (SMR). The SIM dictates
this motion, where the local minima and maxima of the
SIM predict the maximal and minimal amplitude of the
SMR, and the saturation amplitude of the host system.
As this phenomenon was already studied for the hard-
ening NES, in this section, it is verified whether this
also holds for the softening NES.

In Fig. 6, the time series obtained from a Runge–
Kutta (RK) numerical integration of Eq. (8) is shown.
The considered parameter values are ξ = ξna = 0.2,
ε = 0.02, and κ = 5. The forcing amplitude is P̄ = 5
with frequency � = 0.98, while trivial initial condi-
tions are used. In Fig. 6a, the SMR is exhibited by the
modulation of the amplitude of the host system mass
displacement x̄ . The maximum and minimum of this
modulation can be estimated by a+ and a−. Regard-

ing the relative absorber displacement z̄, the amplitude
modulates between b−− and b++. By extracting the
envelope from the RK simulations, they can be com-
pared with the SIM in Fig. 6b. The SMR has the shape
of a continuous cycle: first, it moves up on the SIM left
branch, and once it reaches the fold near [b−, a+], it
jumps to the right branch moving horizontally to the
right to [b++, a+], then it descends the right branch
until the fold at [b+, a−], from where it jumps back to
the left branch to [b−−, a−], where it restarts the cycle.
The jumps in the SMR cycle correspond to transient
motion between two slowly varying stationary motions
on the SIM. Accordingly, while jumping between the
stable SIM branches, the numerical solution exhibits a
sort of overshoot compared to the analytical SIM.How-
ever, while moving on the SIM, the matching between
the analytical and numerical solutions is very good,
especially for the leftmost part of the SMR cycle.

Simulations are repeated for a range of forcing fre-
quencies in an increasing and decreasing frequency
stepped-sine excitation; the obtained oscillation ampli-
tudes are compared to the FR provided by the ana-
lytical procedure in Fig. 7. For each simulation, the
root-mean-square (RMS) value is computed, and, if the
vibrations exhibit an SMR, the envelope is extracted,
and the minimum and maximum are determined from
the envelope. The RMS value is multiplied by

√
2, as

this should equal the vibration amplitude if the vibra-
tions are a pure sine. The triangles pointing to the right
indicate the increasing frequency stepped-sine, while
the triangles pointing to the left indicate the decreasing
frequency stepped-sine. For periodic solutions (non-
SMR), the matching between numerical and analytical
solutions is excellent. In the case of SMR, the maxi-
mum and minimum of the simulations follow the max-
imumandminimumof the SIM in black dotted lines for
a. Regarding b, the red dotted lines correspond to b++
and b−−, which mark the maximal and minimal ampli-
tude of the SMRs. Not surprisingly, the minima of the
numerical solutions are lower than the analytically pre-
dicted minima (in a), while the numerically predicted
maxima are larger than the analytical ones (for a and b).
This is due to the overshooting of the system during the
jump between the two stable branches of the SIM, as
also discussed referring to Fig. 6b. Carefully observing
the frequency response for P̄ = 5, Fig. 7a and b, the
increasing and decreasing frequency have a slightly dif-
ferent response.Notably, SMRsalso exist for frequency
values where the periodic solution is stable. As the ana-
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Fig. 3 Frequency responses for the hardening NES where ξna = ξ = 0.2, ε = 0.02. Solid thick lines represent stable solutions while
the dashed lines are unstable solutions. Thin dashed-dotted lines refer to the host system without any absorber

Fig. 4 Frequency responses for the softening NES where ξna = ξ = 0.2, ε = 0.02, κ = 5. Solid thick lines represent stable solutions,
while the dashed lines are unstable solutions. Thin dashed-dotted lines refer to the host system without any absorber

lytical FR is computed by assuming a single frequency
during the CxA procedure, differences between numer-
ical and analytical results can also be attributed to the
contribution of additional frequencies. By increasing
the forcing amplitude to P̄ = 9, an isola appears in
the FR, as depicted in Fig. 7c and d. Although the IRC
is detached by the main branch, it is reached by the
system during the sweep-up when the branch of SMR
ends. In general, reaching the IRC depends on the type

of excitation and initial conditions. The relevance of
the IRCs is discussed in the next section.

4 Isolated resonance curve analysis

4.1 Singularity theory

For the analysis of the IRCs, we adopt the so-called
singularity theory, according to the framework devel-
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Fig. 5 Comparison of the amplification a/P̄ and b/P̄ for the
hardening and softening NES where ξna = ξ = 0.2, ε = 0.02
for both NESs and κ = 5 for the softening NES. For the harden-
ing NES, P̄ = 0.61 and for softening NES, P̄ = 6. Solid thick

lines represent stable solutions while the dashed lines are unsta-
ble solutions. Thin dashed-dotted lines refer to the host system
without any absorber

Fig. 6 Numerical simulation results of the full EOM of the pri-
mary system with the attached softening NES; parameter values
are P̄ = 5, � = 0.98, ξ = ξna = 0.2, ε = 0.02, and κ = 5. a

Black lines: time series, red lines: envelopes, blue dashed lines:
characteristic points from the SIM. b SIM and envelope of the
Runge–Kutta time integration

oped in [58] (see also [29], specifically referred to IRC
analysis through singularity theory). In simple words,
given an equation of the form

g (b,�,μ) = 0, (30)

where b is the state variable, � is the bifurcation
parameter, and μ is a set of parameter values, specific
types of topological changes of the curve marked by
g (b,�,μ) = 0 can be identified through the eval-
uation of its implicit derivatives. These topological
changes are called singularities and correspond tobifur-
cations of the original dynamical system. For the scope
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Fig. 7 Comparison of analytically (black lines) and numerically (colored triangles) estimated oscillation amplitudes for the system
with an attached softening NES. P̄ = 5 (a,b) and P̄ = 9 (c,d). Other parameter values are ξ = ξna = 0.2, ε = 0.02 and κ = 5

of this study, two codimension-one nonpersistent sin-
gularities are relevant: the isola and the simple bifurca-
tion. The isola singularity, which indicates the appear-
ance of an IRC, marks the boundary between the exis-
tence of a closed loop and its inexistence. At the singu-
larity, the IRC is reduced to a single point. Its defining
and non-degeneracy conditions are:

g = ∂g

∂�
= ∂g

∂b
= 0,

∂2g

∂b2
�= 0, det

(
d2g

)
> 0 (31)

where det
(
d2g

)
is the determinant of the Hessian

matrix.

The simple bifurcation marks the intersection bet-
ween twobranches, distinguishingbetween themoment
when there are, e.g., an upper and a lower branch, from
the moment when there is a right and a left branch. At
the singularity, the curve appears to be a cross.Concern-
ing the system under investigation, the simple bifurca-
tion marks the merging of an IRCwith the main branch
(however, it could potentially indicate its detachment).
Its defining and non-degeneracy conditions are:

g = ∂g

∂�
= ∂g

∂b
= 0,

∂2g

∂b2
�= 0, det

(
d2g

)
< 0. (32)
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For the systems under study, the algebraic equations
describing the system steady-state response are given
by Eqs. (18) and (24) for the hardening and softening
cases, respectively. These two equations correspond to
the g (b,�,μ) = 0 equation used for the analysis. In
order to investigate conditions under which IRCs can
appear, a system of algebraic equations, including the
defining conditions of isola and simple bifurcations,
was created, i.e.,

g = 0,
∂g

∂�
= 0,

∂g

∂b
= 0. (33)

The solutions of this algebraic equation system are then
defined through a classical pseudo-arclength continu-
ation algorithm, leading to curves marking the appear-
ance and merging of the IRC.

4.2 Isolated resonance curve prediction

For the computation, the absorber damping ξna was
kept as a free parameter, obtaining the curves illustrated
in Figs. 8a and 8b, which refer to the hardening and
softening cases, respectively.

Referring to the hardening case, in Fig. 8a, the
upper plot marks the forcing amplitude P̄ at which the
IRC appears (lower curve) and merges (upper curve).
The two cases were distinguished through the sign
of the determinant of the Hessian matrix (cf. (31)).
The middle plot indicates the frequency at which the
IRC appears or merges; we note that the value is
always below 1, i.e., at the left of the resonance, as
expected. The lower plot illustrates the nondimensional
absorber relative oscillation amplitude b at which the
IRC appears and merges. The upper curve indicates the
appearance of the IRC, while the lower one indicates
its merging. An interesting feature of the curves is the
fold that they present for ξna ≈ 0.9. At the left of this
point, no merging or IRC appearance was identified,
meaning that, most probably, if ξna > 0.9, the system
does not present IRCs. Clearly, variations to the other
parameter values modify this limit on ξna . The values
ε = 0.02 and ξ = 0.2 were used for the computation.

Let us now consider the softening case and the
results of the singularity analysis shown in Fig. 8b. The
upper plot illustrates forcing amplitude corresponding
to the appearance and merging of the IRC, where the
lower branch refers to the merging. The middle dia-
gram indicates at which frequency the IRC appears and

Fig. 8 Bifurcation diagrams for hardening NES (ξ = ξna = 0.2
and ε = 0.02) (a) and for the saturatingNES (ξ = ξna = 0.2, ε =
0.02) and κ = 5 (b). Lines indicate either simple bifurcations
(touch) or isola bifurcations (appear)

merges; notably, the values are all above 1, as IRCs are
on the right of the resonance peak. The lower plot indi-
cates the nondimensional absorber relative oscillation
amplitude at the merging and appearance of the IRC.
Also in this case, a fold exists for ξna = 0.29. No IRC
should exist on the right side of this fold according
to our calculation (we note that the existence of other
IRCs not related to the tracked isola singularity cannot
be excluded). These resultswere obtained for ε = 0.02,
ξ = 0.2, and κ = 5.

Figures 9a and 9b show the two FRs for the hard-
ening NES, one just after the appearance of the IRC
(P̄ = 0.604), and the other one at the merging (P̄ =
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1.154), according to the values obtained in Fig. 8a
for ξna = 0.2. The FRs confirm the results obtained
through the singularity analysis.

Referring to the softening NES, Figs. 9c and 9d
shows the FRs for the appearance of the IRC (P̄ =
8.175) and its merging (P̄ = 9.573), according to
the value obtained from Fig. 8b. Again, these confirm
the accuracy of the singularity analysis. In [44], it was
found that for high ξ (damping of the host system), the
isola could appear under the saturation line of the host
system, a+, if the isola stays below b++. In Figs. 9e and
9f, it is shown that this is also the case for a saturating
NES (here ξna = 0.2, ξ = 0.5 and κ = 8). When the
isola just appears, it is below a+ in the FR of the host
system, and below b++ in the FR of the absorber. How-
ever, increasing the forcing amplitude slightly pushes
the isola above b++ and above the saturation a+. This
case will not be investigated further because the high
damping of the host system makes it of minimal prac-
tical relevance for vibration mitigation, and the force
range where the isola is lower than a+ is rather limited.

5 Comparative performance analysis

5.1 Performance over a force range

The performance of the hardening and softening NES
are investigated and compared. Figures10a and 10b
show the maximal amplitude of the host system for
the softening NES with ξ = 0.2, ε = 0.02, and κ = 5,
and for the hardening NES with ξ = 0.2 and ε = 0.02.
This maximal amplitude is obtained from the maxi-
mal value of the FR obtained from the CxA procedure,
excluding unstable solutions. The bifurcations when
the isola appears and merges are also shown on the
surface (black lines), as well as the line where the satu-
ration of the amplitude starts (red lines). The condition
for the beginning of the saturation of the amplitude a is
when b reaches b−, where, accordingly, a = a+. This
point is found from the following condition:

g = ∂g

∂b
= ∂h

∂b
= 0,

∂2h

∂b2
> 0 (34)

where g represent either Eq. (18) or Eq. (24), and h
indicate the SIM equation, (17) or (23). The surfaces
of the NES performance in Figs. 10a and 10b can be
divided into 3 parts: 1) For forces lower than the sat-

uration line, the host system oscillation amplitude a
increases almost linearly with the force, 2) between
the saturation line and isola appearing line the ampli-
tude saturates, and 3) after the isola appearing line,
the amplitude increases again in function of the force.
Comparing the hardening and softening NES reveals
three main differences: 1) the forcing amplitude lead-
ing to saturation almost does not depend on ξna for the
softening NES, while it strongly depends on ξna for
the hardening NES, 2) the plateau of saturation is big-
ger for the softening NES, and 3) the amplitude jump
at the appearance of the isola is larger for the harden-
ing NES than for the softening NES. Sections of these
surfaces for ξna = [0.2, 0.4, 0.6, 0.8] are depicted in
Fig. 10c for the softeningNESandFig. 10d for the hard-
ening NES. These clearly show the increase of ampli-
tude before the saturation, a plateau of saturation, and
then a jump, followed by a steady increase of ampli-
tude, once the isola appears. The merging of the isola
does not affect the maximal amplitude.

The dashed lines in Fig. 10c and dmark the a− value.
When the amplitude saturates, an SMR is triggered
between the saturated amplitude and a−. However, for
ξna = [0.6, 0.8], no a− can be computed because the
high NES damping eliminates the folds [7]. Accord-
ingly, for large damping, there will be no SMR and the
average amplitude will thus be the maximum ampli-
tude, while under SMR the average or RMS amplitude
is between the saturation and a−. However, increasing
ξna is also beneficial as it increases the force where the
isola appears. So, for both NESs, choosing the damp-
ing is a compromise between average amplitude and
useful force range.

To better compare bothNESs, the amplification a/P̄
is depicted in Fig. 11a for the softening NES and in
Fig. 11b for the hardening NES. Both NESs are within
the same order of magnitude. The softening NES ini-
tially has a higher amplification than the hardening
one, but for increasing forcing amplitude, it quickly
decreases, becoming lower than for the hardeningNES.
Furthermore, the hardening NES has a large jump as
the IRC appears, regardless of its damping.

We introduce the force range index (FRI) to further
compare the two absorbers:

Force Range Index: FRI = Pisola
Psaturation

, (35)
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Fig. 9 a,b Frequency
responses for the hardening
NES for forcing amplitudes
corresponding to
appearance and merging of
the IRC; parameter values:
ξna = ξ = 0.2, and
ε = 0.02. c,d Analogous
figure for the softening
NES; parameter values:
ξna = ξ = 0.2, ε = 0.02
and κ = 5. e, f Frequency
responses for the softening
NES in the case for high
host system damping,
parameter values: ξ = 0.5,
ξna = 0.2, ε = 0.02 and
κ = 8. Solid lines: stable
solutions, dashed lines:
unstable solutions

which is the ratio between the forcing amplitude of
IRC appearance and saturation. Since a small saturat-
ing force and a large IRC appearance force are desir-
able, in general, a large FRI is an indicator of good
performance. Figure11c compares this FRI for both
NES types. For the hardening NES, FRI first increases
and then decreases in function of ξna , peaking at 2.075;
conversely, for the saturating NES, the FRI monoton-
ically increases reaching much higher values than for
the hardening NES.

5.2 Optimization

Apart from its mass, the softening NES is defined by
two parameters, the damping coefficient ξna and κ . In
Figs. 12a-12c, for a given P̄ , the maximum amplifica-
tion a/P̄ in the FR is plotted in function of ξna and κ

(excluding unstable solutions). The black lines on the
surfaces separate regions where IRC is present from
regions where no IRC exists. The lines where obtained
through a continuation of the fold in Fig. 8b. Note that
these lines do not depend on P̄; therefore, in the ‘no
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Fig. 10 Performance of the NESs interpreted as the maximal
amplitude of stable periodic solutions around resonance. Param-
eter values for the softening NES are ε = 0.02, ξ = 0.2, and
κ = 5, while for the hardening NES are ε = 0.02 and ξ = 0.2.

Black lines mark the appearance and merging of the isola, while
the red lines mark the beginning of the saturation of the host sys-
tem’s amplitude. c and d are sections of the surfaces in (a) and
(b), respectively

IRC’ region, whatever is the forcing amplitude, no IRC
is expected; on the contrary, in the ‘IRC’ region, a forc-
ing amplitude range exists for which an IRC is encoun-
tered. The amplification for the hardeningNES in func-
tion of the damping is also plotted in Fig. 12d (exclud-
ing itsmass, damping is the only parameter defining the
dimensionless hardeningNES). In the case of softening
NES, as the force increases, so do the optimal κ , ξna
and the amplification a/P̄ . In each case, the optimal
value is just outside the region with IRC. For the hard-
ening NES, the minimum amplification first decreases,
then increases in function of P̄ . Between the investi-

gated cases, the lowest amplification is obtained for the
softening NES, for P̄ = 5. We remark that the anal-
ysis does not take into account SMR, which might be
the reason why highly damped NESs seem to provide
better performance.

Note that for the hardening NES, the optimal points
occur for a damping ξna where IRC still exists, as the
upper Fig. 8a indicates, IRCs exist for ξna < 0.9.While
for the optimized P̄ , no IRC is present, by increas-
ing the forcing amplitude, an IRC is triggered, which
limits the NES performance. Accordingly, an impor-
tant advantage of the optimized softening NES is the
absence of IRC for any forcing amplitude.
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Fig. 11 Direct comparison of the amplification a/P̄ of the soft-
ening (a) and hardening NESs (b), for ξ = 2, ε = 0.02 for both
NESs and κ = 5 for the softening NES. a indicates the maxi-

mal value around resonance according to the analytical results.
c Comparison of the Force Range Index for the two absorbers

6 Conclusions

This study investigated the performance of a softening
NES and compared it to a conventional hardening NES
for controlling vibrations of a harmonically loaded sys-
tems. Using the CxA method, we derived polynomial
equations enabling us to analytically investigate sys-
tem dynamics, focusing on periodic solutions, the sat-
uration effect, SMRs, and IRCs.

Our analysis highlighted several key findings. First,
while both softening and hardening NESs exhibit the
beneficial saturation effect and SMR, the softening

NES demonstrated distinct advantages. The IRC for
the softening NES is located to the right of the res-
onance peak, in contrast to the left-side location for
the hardening NES. This rightward placement could
benefit systems where the excitation frequency ramps
up. Furthermore, the softening NES showed a smaller
amplitude jump at the onset of the IRC compared to
the hardening NES.

We introduced the FRI as a comparative measure of
the saturation and isola-appearing force ranges. The
softening NES displayed a superior FRI, indicating
a broader force range for effective vibration control.
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Fig. 12 Optimization of ā/P̄ for the softening NES (ξ = 0.2,
ε = 0.02) for P̄ = 5 (a), P̄ = 10 (b) and P̄ = 15 (c); and for
the hardening NES (ξ = 0.2, ε = 0.02). a indicates the maxi-

mal value around resonance according to the analytical results.
Solid lines in a–c separate the regions with and without IRCs,
according to the analytical estimation

Additionally, parameter values were identified where
the softeningNESoperateswithout IRCs,without com-
promising its performance. In contrast, eliminating the
IRC in a hardening NES requires high damping, which
can degrade performance unless nonlinear damping is
used [43]— a scenario not addressed in this study.

Overall, the softening NES offers several advan-
tages over the hardening NES, particularly in terms of
broader operational force ranges, reduced amplitude
jumps, and improved robustness. However, our find-
ings do not preclude the possibility that other forms
of nonlinearity might lead to different conclusions. For

instance, the interplay of nonlinear stiffness with com-
plexdampingmechanismsor alternative restoring force
characteristics could yield additional insights into the
comparative performance of softening and hardening
NESs. Additionally, while this study focused on the-
oretical analyses, the practical realization of a soft-
ening NES mechanism remains a critical challenge.
Although some mechanisms of softening springs have
beenproposed [59,60], no experimentalworks in vibra-
tion control have been done. Developing a robust and
scalable implementation of the softening NES, capa-
ble of retaining its advantageous properties under real-
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world conditions, will be an essential step forward.
Future research should also extend these investiga-
tions to more complex multi-degree-of-freedom sys-
tems, where interactions between multiple modes and
theNES could introduce new dynamics and further val-
idate the conclusions presented here.

Author contributions K.D. conceived the study. K.D. per-
formed the primary analytical investigation. G.H. performed
the isolated resonance curves analysis. K.D. carried out the
numerical validation. K.D. and G.H. wrote the first draft of the
manuscript, including the generation of the figures. G.H. revised
the manuscript.

Funding Open access funding provided by Budapest University
of Technology and Economics.

Data Availability Statement No datasets were generated or
analysed during the current study.

Declarations

Conflict of interest The authors declare no Conflict of interest.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in anymedium
or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or
other third partymaterial in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit
line to thematerial. If material is not included in the article’s Cre-
ative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/
by/4.0/.

A Integrals

To compute the integral (16), it is assumed that B is
constant over the single period of integration, Bei�τ +
B∗e�i�τ = b cos(�τ + β). Furthermore, the variable
of integration is substituted by τβ = �τ + β. When
fs(z̄) = z̄3, this integral is computed as:

BG(|B|) = �

2π

∫ 2π
�

0
fs

(
Bei�τ + B∗e�i�τ

)
e�i�τ dτ

= beiβ

2π

∫ 2π

0
b2 cos3(τβ)e�iτβ dτβ

= b

2
eiβ

(
3

4
b2

)
= B3|B|2

(36)

as such,G(|B|) = 3|B|2 andG(b) = 3
4b

2. For fs(z̄) =
κ arctan(z̄) then is:

BG(|B|) = κeiβ

2π

∫ 2π
�

0
arctan

(
b cos(τβ)

)
e�iτβ dτβ

= eiβ
(√

b2 + 1 − 1

b

)
= B

(√
4|B|2 + 1 − 1

2|B|2
)

(37)

B Stability under harmonic load

The stability of the averaged dynamical equations (12)
is computed from the linear stability around equilib-
rium of A and B:

2i
√

�2

⎡
⎢⎢⎣

�̇A

�̇∗
A

�̇B

�̇∗
B

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

⎤
⎥⎥⎦

︸ ︷︷ ︸
�

⎡
⎢⎢⎣

�A

�∗
A

�B

�∗
B

⎤
⎥⎥⎦ (38)

where �A = A − Aeq, �B = B − Beq where Aeq and
Beq are points found in steady-state, (13). The matrix
elements are:

a12 = a21 = a32 = a41

a11 = −a∗
22 = −εσ − iεξ�

a13 = −a∗
24 = iεξna� + ε

∂(B · G(B, B∗))
∂B

∣∣∣∣
B=Beq

a14 = −a∗
23 = ε

∂(B · G(B, B∗))
∂B∗

∣∣∣∣
B=Beq

a31 = −a∗
42 = εσ + iεξ� + �2

a33 = −a∗
44 = �2 − 1 + ε

ε
a13

a34 = −a∗
43 = −1 + ε

ε
a14 (39)

The stability is then determined from the eigenvalues
of �

2i�2 . The eigenvalues can also be used to determine
which type of bifurcation occurs.

C Stability of SIM

To compute the stability of the SIM, a two-time scale
method is applied on the dynamical equation of (12)
[57,61]. The two time scales are τ0 = τ and τ1 = ετ ,
and the time derivative becomes ′◦ = ∂ ◦ /∂τ0 + ε∂ ◦
/∂τ1. After applying the two time-scales the equations
are considered per order of ε. For order ε0, this is:
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i2
∂A

∂τ0
� = 0

i2
∂B

∂τ0
� = +�2B + �2A − ξnai�B + BG(|B|) = 0

(40)

The stability of the solutions on the SIM are computed
with the 2nd equation of (40). Linearizing this equa-
tion around equilibrium Beq = b

2e
β obtained from the

solutions of (13) gives the following set of equations:

[
�̇B

�̇∗
B

]
=

[
a11 a12
a21 a22

]
︸ ︷︷ ︸

�

[
�B

�∗
B

]
(41)

where�B = B− Beq where Beq are points on the SIM
and

a11 = a∗
22 = − i�2

2
− ξna�

2
+ i

2

∂(B · G(B, B∗))
∂B

∣∣∣∣
B=Beq

a12 = a∗
21 = i

2

∂(B · G(B, B∗))
∂B∗

∣∣∣∣
B=Beq

(42)

Finally, the stability is determined by computing the
eigenvalues of � matrix in (41). If any eigenvalue has
a positive real part, the solution is unstable.
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