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Abstract In vibrating mechanical systems, the tar-
geted energy transfer mechanism (TET) of nonlinear
energy sinks (NES) is employed as an alternative to lin-
ear tuned mass dampers (TMD) as passive vibrations
absorbers for transient vibrations. The major advan-
tages a NES has over a linear TMD are (1) an increased
robustness to detuning and (2) the ability to dissipate
multiple frequencies with only a single NES through
so-called resonance capture cascading (RCC). The per-
formance, especially the speed, of TET and RCC has
rarely been a topic of research. In this research, alge-
braic performance measures for the speed of both TET
and RCC are derived, called the pumping time and the
cascading time, respectively. It shows that cascading
time can be seen as a sum of single-mode pumping
times, by introducing a novel modal decomposition.
The strength of bothmeasures is that they do not require
numerical simulations, allowing easy optimization of
the NES. The influence of different nonlinearities on
the TET and RCC performance is investigated. Actual
numerical simulations presented in the study validate
the merit of both the pumping time and cascading time.
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1 Introduction

Excessive vibrations in mechanical structures not only
lead to reduced structural integrity, but also are detri-
mental for sensitive equipment or people. While vibra-
tions can be counteracted with active feedback loops,
often it is desired that these excessive vibrations are
mitigated by passive means. In civil engineering, the
vibration energy in a structure can be of such magni-
tude that active means would require massive amounts
of energy. In aerospace sensitive equipment, cargo and
people should be protected even in case of a power
failure. Passive vibration absorption is often realized
by local addition of a linear mass–spring–damper sys-
tem, called a tuned mass damper (TMD). With the
addition of a well-designed TMD, the vibration energy
will be transferred from main mechanical structure to
the TMD, where the energy is dissipated by the linear
damper. Typically, for a linear TMD to perform well,
the natural frequency of the added TMD is designed to
be equal to the frequency of the main system’s vibra-
tion, often one of themodal frequencies of thismechan-
ical system. A single linear TMD is only capable of
reducing the vibrations of a single frequency signif-
icantly. This inherent property is its main drawback.
The frequency of vibrations of amechanical system not
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only can change due to different loading conditions or
changes to the system itself (so-called detuning), but
can consist of several dominant frequencies, a combi-
nation of the mechanical systems modal frequencies.
To tackle these problems, so-called nonlinear energy
sinks (NES) are employed, which are TMDs where the
connecting stiffness is nonlinear. Because of this non-
linear stiffness, the TMD does not have a preferential
(natural) frequency. As a consequence, not only is the
performance of the NESmore robust to detuning, a sin-
gle NES is capable of absorbing multiple frequencies
[1,2].

Themechanismof vibration absorption in theNES is
dubbed targeted energy transfer (TET). It is defined as
a sudden one-way irreversible transfer of energy from
source (mechanical system) to a donor (NES) [1]. In the
previous research, typically a numerical example of a
low (often one)-dimensional main system and a con-
necting NES with a cubic nonlinearity and fixed coef-
ficient is investigated thoroughly for qualitative aspects
[1–6]. For transient vibrations, a threshold is observed
for the initial conditions on the main mechanical sys-
tem. Below this threshold, vibration absorption by the
NES is very slow. Once this threshold is reached, TET
occurs and vibrations are dissipated swiftly. The perfor-
mance decreases again for initial conditionway beyond
the threshold. This sudden change of behavior is caused
by an underlying bifurcation, typically found in non-
linear dynamics. Also, the occurrence of internal reso-
nances is observed, where both the absorber and NES
vibratewith a different frequency.Although this behav-
ior is remarkable, it only has significant effect on the
TET dynamics for certain specificmain systems, where
the modal frequencies either are indistinct or are com-
mensurable, i.e., their ratio is rational number. In [5]
a 3:1 internal resonance is considered by deliberately
choosing a linear main system of which the eigenfre-
quencies have a 3:1 ratio, while in [7], two identical
linear oscillators are weakly coupled, creating closely
spaced eigenfrequencies. For other main systems, the
frequency-energy dependence can induce internal res-
onance, as the increase in excitation or energy level can
make the frequencies of the nonlinear modes commen-
surable in a small energy band [1]. The range of excita-
tion level or initial conditions where this happens is so
small that the internal resonance rarely occurs. Also,
it is not associated with a strong energy transfer for
the systems considered here, illustrated in numerical
simulations in [1,8].

More application-oriented research expanded this
threshold on the initial condition to a more general
parameter threshold, independent of the numerical val-
ues of the parameters [9–11], allowing to tune the non-
linear coefficient, regardless of the numerical values of
the initial condition or parameters of the main system.

The performance in terms of speed of TET is rarely
assessed, while this is critical from a vibrations miti-
gating point of view. Usually, numerical simulation is
performed, and the fraction of the total energy that is
transferred during TET is used as a performance mea-
sure. This does not tell anything about the speed of
the TET and requires a new numerical simulation for
each parameter variation [1,12–14]. Nyugen [10] was
the first to define measure of speed for the TET for
undamped main systems, the so-called pumping time
for NES attached to a single-mode vibrating systems.
He showed that TET is most optimal when the ini-
tial conditions are equal to the threshold, and thus the
NESnonlinearity should be tuned to ensure this optimal
TET. Only a cubic nonlinearity was considered. Lin [6]
expanded a similar measure for nonlinearities of power
5 and 7, yet focused only on a few numerical examples
and did not consider the optimal performance at all. A
powerful aspect of Nyugen’s pumping time is that it is
an algebraic expression depending on the parameters of
the mechanical systems and NES, as well as the initial
conditions. Because of this, the pumping time is calcu-
lated without the need of a numerical simulation, such
that the influence of certain parameters can be easily
assessed.

In the research, the idea of the pumping time is uti-
lized to its full potential, it is extended for damped
main systems and for stiffnesses which posses not only
a uneven power, but also a small, both positive or neg-
ative linear part. This allows us to easily see the effect
without performing any numerical simulation. It will
be observed that for a single-mode vibrating mechan-
ical system, a small positive linear part will expedite
TET, while a power larger than three and negative lin-
ear impedes TET.

A major advantage a NES has over a linear TMD
is the capability to dissipate multiple frequencies for
transient vibrations, [15]. The mechanism of multi-
frequency vibration absorption in a single NES is
called resonance capture cascading (RCC), where the
modal frequencies of the mechanical system are dis-
sipated sequentially (hence cascaded) from higher to
lower modal frequencies. This sequential nature is best
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observed in the NES, which initially vibrates with a
single modal frequency, even though the mechanical
system vibrates with multiple modes. If enough energy
of this initial mode has been dissipated, the NES will
start to vibrate with the modal frequency just below
the initial mode. This continues until all modes have
been dissipated. The capability of RCC, just as the
increased robustness to detuning of the mains system,
stems from lack of ’natural’ frequency of the NES, so
that it can vibrate vigorously with any of the modal
frequencies. Research on RCC has been given similar
treatment as single-mode TET, with focus on global
dynamics, internal resonances, and thorough discus-
sion and observation of numerical examples [1,2,16].
A more recent study investigated a NES attached to
a two degree-of-freedom main system [14], but only
considered single-mode vibrations, despite the ability
of the NES to engage in RCC with the two modal fre-
quencies.

In this research, a more application point of view is
taken forRCC.First, a tuning procedure forRCC is pro-
posed, in which the initial mode of the cascade can be
chosen. Second, the pumping time is extended to a so-
called cascading time, by decomposing the mechanical
system into its modal initial conditions. Of each modal
initial condition a pumping time can be calculated, with
the sum equaling the cascading time. Just as the pump-
ing time, the cascading time is determined without any
numerical simulations, which allows us to asses many
different NES configurations quickly.

The effect of additional linear stiffness and high
powers of the NES on cascading time is more nuanced
than the single-mode pumping time. Under certain con-
ditions, a positive linear part will impede the cascading
time, and a negative linear part and power higher than
threewill actually expedites the cascading, the opposite
effect it had on the pumping time.

The paper is structured as follows: first the dynam-
ics of the mechanical system and the coupling with
the NES are derived, by assuming a single-mode
vibration. On these coupled nonlinear dynamics, the
semi-analytic techniques, perturbation series and two-
timing are applied. A static expression is found which
describes the dynamics on a slow time scale, the
so-called slow invariant manifold (SIM). With this
curve, the performance measures energy dissipation
and pumping time are defined, the latter for undamped
main systems. Next, the pumping time is calculated for
a numerical example, and simulations are performed to

observe how the algebraic performancemeasure pump-
ing time appears in simulation of the actual, fast dynam-
ics. Next, for multi-modal vibrations, the cascading
time is derived by decoupling the initial conditions of
the mechanical system, and then, simulations are per-
formed to validate algebraic cascading time as well.
Finally, it is investigated if the performance can still be
assessed if a main system with slight nonlinearity or
damping is considered.

2 List of symbols

Symbol Name

αp Nonlinear coefficient of NES stiffness per mna

ATET Amplitude reduction during TET
ε Ratio of mna and me.
ei (�) �’th component of eigenvector of mode i
E Eigenvector matrix of linear main system
E0 Energy in center of mass
Ena Energy in relative NES movement
ETET Energy dissipation during TET
κ Dimensionless linear stiffness of the NES
ke Modal stiffness of i’th mode scaled by ei (�)2

kp Coefficient of the nonlinear NES stiffness
klin Linear stiffness of NES
λ Modal damping of the main system per mna

λna NES damping per mna

me Modal mass of i’th mode scaled by ei (�)2

mna Mass of NES
ωi The i’th eigenfrequency
� Dimensionless nonlinear coefficient of NES
ϕ Complexified coordinate of u
ϕna Complexified coordinate of v
p Power of NES stiffness
T0 Fast time scale
T1 Slow time scale
Tpump The pumping time, speed of TET
Tcascade The cascading time, speed of RCC
u Coordinate of center of mass
u Coordinate of relative NES movement
x Displacement vector of the main system
x� Attachment coordinate of NES
xna Coordinate of the NES
ξ Dimensionless modal damping
ξna Dimensionless NES damping
Z0 Dimensionless energy in center of mass
Zna Dimensionless energy in relative NES movement
Z±
0 Extrema of Zna on the rve

Z±
na Extrema of Zna on the SIM
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3 System dynamics

The studied main system, a linear lumped MDOF sys-
tem, is governed by the following dynamic equation:

Mẍ(t) + Cẋ(t) + Kx(t) = F(t) (1)

with x(t) = [ x1(t) x2(t) ... xn(t) ]T ∈ R
n×1 the displace-

ment vector, M ∈ R
n×n the mass matrix, C ∈ R

n×n

the viscous damping matrix, K ∈ R
n×n the stiffness

matrix and F ∈ R
n×1 the force vector. In Sect. 8, the

effect of additional nonlinearity in the main system
is also investigated. Assuming proportional damping
(C = aM + bK , a, b ∈ R+), the n quadratic eigenval-
ues ω2

i with corresponding eigenvectors ei are derived
from:

det (K − Mω2) = 0

(K − Mω2
i )ei = 0

(2)

Let E = [e1 e2 . . . en] ∈ R
n×n be the eigen-

vector matrix up to a scaling, then physical coordinates
can be transformed into the modal coordinates q ∈ R

n

by x(t) = Eq(t):

Mqq̈(t) + Cqq̇(t) + Kqq(t) = ET F(t) (3)

with Mq = ET ME the diagonal modal mass matrix,
Cq = ETCE the diagonal modal damping matrix and
Kq = ET K E the diagonal modal stiffness matrix. The
main system is effectively transformed in n decoupled
linear oscillators with natural frequencies ωi .

A NES with a connecting stiffness, consisting of
a linear part and a nonlinear part of uneven positive
power p, p = 2y + 1 with y ∈ N>0, is attached on the
main system on physical coordinate �. The compound
system, depicted in Fig. 1, is described by:

Mẍ + Cẋ + Kx + mnaδ�n ẍna = F

mna ẍna + cna(ẋna − ẋ�)

+ klin(xna − x�) + kp(xna − x�)
p = 0

(4)

with δ�n = [ 0 0 ... 0 1 0 ...0 ]T ∈ R
n×1, the connectiv-

ity vector, nonzero at the �th index. The modal decom-
position of the original system is substituted in the com-
pound system:

Mqq̈ + Cqq̇ + Kqq + mnae∗(�)T ẍna = ET F

mna ẍna + cna(ẋna − ẋ�)

+ klin(xna − x�) + kna(xna − x�)
p = 0

(5)

with e∗(�) ∈ R
n×1 denoting the �th row of E , so the

�th component of each eigenvector.

m1

ml

mn

mna

k1 c1

k2 c2

k c

k +1 c +1

kn cn

kna cna

x1

x

xn

Fig. 1 The studied compound system, an MDOF linear system,
with a NES attached to coordinate �

In this work, the transient behavior is studied, so no
force is applied, F = 0. Also, the system is assumed
to only vibrate according to mode i :

x(t) =
n∑

k=1

ekqk(t) = eiqi (t) (6)

as qk �= 0 if k = i . The NES is assumed to vibrate
with the same frequency. This synchronous vibration
is called 1:1 vibration and holds if the NES is excited
near its energy threshold, [1,4]. With the single-mode
assumption, internal resonances are ruled out, as then
both the NES and main system vibrate with a different
frequency. By replacing (6) in (4), the modal dynamics
significantly simplify to:

mq,i q̈i + cq,i q̇i + kq,i qi + mnaei (�)ẍna = 0

mna ẍna + cna(ẋna − x�)

+ klin(xna − x�) + kp(xna − x�)
p = 0

(7)
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mq,i/e
2
i ( )

mna

kq,i

e2i ( )
cq,i
e2i ( )

kna cna
x

xna

Fig. 2 Single-mode assumption of compounds system results in
a 2DOF problem

This can be rewritten to only include the attachment
point displacement x� = ei (�)qi and the NES displace-
ment xna :

meẍ� + ce ẋ� + kex� + mna ẍna = 0

mna ẍna + cna(ẋna − ẋ�)

+ klin(xna − x�) + kp(xna − x�)
p = 0

(8)

By assuming a single mode of vibration, the n + 1
DOF compound system is thus rewritten as a 2DOF
problem. It is as if the NES is attached to an SDOF
main system with mass me = mq,i

ei (�)2
that is grounded

with damping ce = cq,i

ei (�)2
and stiffness ke = kq,i

ei (�)2
, see

Fig. 2. The coordinate of the equivalent SDOF main
system equals the coordinate of the attachment point
of the NES on the original MDOF main system, �.

Dividing (8) by me:

ẍ� + ελẋ� + ω2
i x� + εẍna = 0

εẍna + ελna(ẋna − ẋ�) + εαp(xna − x�)
p

+ εκω2
i (xna − x�) = 0

(9)

with

ελ = ce
me

ω2
i = ke

me
ε = mna

me
κ = klin

mnaω
2
i

λna = cna
mna

αp = kp
mna

with ε � 1, the mass ratio, assumed to be small and
κ , the dimensionless measure for the linear part of the
NES.

Previous research [9–11] showed the existence of a
certain initial energy threshold for klin = 0 and p = 3,
below which the NES performs suboptimal, and above
which TET is initiated and the energy is suddenly trans-
ferred from the main system to the NES. Under spe-
cific initial conditions, internal resonances can occur.

This is not considered as it is impractical to expect spe-
cific initial conditions in a vibration mechanical sys-
tem. Also, TET through internal resonance is consid-
ered sup-optimal and if they do occur, they disappear
quickly when damping is present [1]. In the next sec-
tion, the nonlinear dynamics of (9) aremademoreman-
ageable using semi-analytic techniques.

4 Slow flow dynamics

In this section, the slow flow dynamics are derived,
from which we are able to tune the NES and to define
several algebraic performance measures for targeted
energy transfer.

New variables are introduced, u = xl + εxna , the
center of mass of modal/absorber system (8), and v =
xl − xna , the relative absorber movement.

In the new coordinates, (9) becomes (while omitting
terms O(ε2) and with εü = −εω2

i u + O(ε2))

ü + ω2
i u + ε

(
λu̇ + ω2

i (v − u)
)

+ O(ε2) = 0

ε(v̈ + ω2
i v) + εω2

i (u − v) + ελna v̇ + εαpv
p

+ εκω2
i v + O(ε2) = 0

(10)

Variablesu andv are assumed tovibratewith a single
mode, 1:1 resonance, so they can be complexified to:

ϕ(t)eiωi t = u̇ + iωi u, ϕ ∈ C

ϕna(t)e
iωi t = v̇ + iωiv, ϕna ∈ C

(11)

with both ϕ(t) and ϕna(t) representing an amplitude
and phase modulating function and eiωi t an oscillation
with frequency ωi . This allows for a change of vari-
ables:

u = ϕeiωi t − ϕ̄e−iωi t

2iωi
v = ϕnaeiωi t − ϕ̄nae−iωi t

2iωi

u̇ = ϕeiωi t + ϕ̄e−iωi t

2
v̇ = ϕnaeiωi t + ϕ̄nae−iωi t

2
ü + ω2

i u = ϕ̇eiωi t v̈ + ω2
i v = ϕ̇nae

iωi t

(12)

4.1 Semi-analytic reduction

The complexified variables are expanded in a pertur-
bation series:

ϕ = ϕ0 + εϕ1 +���ε2ϕ2 + · · ·
ϕna = ϕna0 + εϕna1 +���

ε2ϕna2 + · · ·
(13)
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which expands the variable ϕ (ϕna) into a sum of
decreasingly contributing terms εiϕi (εiϕnai ). Here,
both series are truncated for O(ε2) and higher. This
way, both ϕ and ϕna only consist of a major (O(ε0)),
denoted by index 0 and a minor (O(ε1)) contribu-
tion, denoted by index 1. This technique can trans-
form difficult-to-solve dynamics into an easily solvable
problem for the (O(ε0))th order term, from which the
small perturbing term can be determined.

Often, the perturbation series will initially approxi-
mate the dynamics, but fail on a longer time scale. To
tackle this, an additional technique is applied to the
perturbation series, the multiple scales technique. The
technique assumes the dynamics behave on two time
scales, a fast T0 = t and a slow T1 = εt time scale. T0
and T1 are assumed to be independent of each other,
making the derivative w.r.t. t , up to O(ε):
d

dt
= ∂

∂T0
+ ε

∂

∂T1
(14)

By applying multiple scales on the perturbation
series, the dynamicswill be approximated both initially
and on the long term. For an introduction on both tech-
niques and their combined use, please refer to [17].
Changing the variables u and v to ϕ and ϕna with
(12) and applying both perturbation series and mul-
tiple time scales on (10) while omitting terms beyond
O(ε2) yields:

∂ϕ0

∂T0
+ ε

∂ϕ0

∂T1
+ ε

∂ϕ1

∂T0
+ ελ

ϕ0

2
+ ε

ω2
i

2iωi

(
ϕna0 − ϕ0

)

+
(
ελ

ϕ̄0

2
− ε

ω2
i

2iωi

(
ϕ̄na0 − ϕ̄0

))
e−2iωi t = 0

ε

(
∂ϕna0

∂T0

)
+ ε

ω2
i

2iωi

(
ϕ0 − ϕna0

) + ελna
ϕna0

2

+ εκω2
i

2iωi
ϕna0 +

(
− ε

ω2
i

2iωi

(
ϕ̄0 − ϕ̄na0

)

+ ελna
ϕ̄na0

2
− εκω2

i

2iωi
ϕ̄na0

)
e−2iωi t

+ εαp(
2iωi

)p
p∑

k=0

(−1)k
(
p

k

)
ϕ
p−k
na ϕ̄k

nae
i(p−2k−1)ωi t = 0

(15)

The terms with a complex exponential (15) are secu-
lar,meaning that these termsmay result in a unbounded
solution. In perturbation theory, these terms are omit-
ted. An additional motivation for this omission is that
ϕ and ϕna vibrate with a single frequency, (11), while
the complex exponentials would introduce extra har-
monics. With the assumption of uneven power p, this
results in:

∂ϕ0

∂T0
+ ε

∂ϕ0

∂T1
+ ε

∂ϕ1

∂T0
+ ελ

ϕ0

2

+ ε
ω2
i

2iωi

(
ϕna0 − ϕ0

) = 0

ε

(
∂ϕna0

∂T0

)
+ ε

ω2
i

2iωi

(
ϕ0 − ϕna0

)

+ ελna
ϕna0

2
+ εκω2

i

2iωi
ϕna0

− ε
iαp(
2ωi

)p
(

p
p−1
2

)
|ϕna0|p−1ϕna0 = 0

(16)

The same result would be obtained if the averag-
ing technique is performed [1]. Collecting according
to powers of ε produces:

∂ϕ0

∂T0
= 0 ⇒ ϕ0(T1)

∂ϕ0

∂T1
+ ∂ϕ1

∂T0
+ λϕ0

2
+ ω2

i ϕna0

2iωi
− ω2

i ϕ0

2iωi
= 0

∂ϕna0

∂T0
+ λnaϕna0

2
+ ω2

i ϕ0

2iωi
− ω2

i (1 − κ)ϕna0

2iωi

− i
αp

(2ωi )p

((
p

p−1
2

)
|ϕna0|p−1ϕna0

)
= 0

(17)

In the first equation, it is seen that ϕ0, the major
contribution to ϕ, only varies over the slow time scale
T1. The other two equations are still difficult to solve.
They feature both the derivatives in T0 and T1 and are
coupled in ϕ0, ϕ1 and ϕna0.

It is proven in [18] that both ϕna0 and ϕ1 evolve
toward a steady state as T0 → ∞; limT0→∞ ϕna0 =

na0 and limT0→∞ ϕ1 = 
1, so that the dynamics of
(17) can be written in steady state form of T0, solely
changing on the slow time scale T1:

∂ϕ0

ωi∂T1
= −ξϕ0

2
+ i
na0

2
− iϕ0

2

0 = − i(1 − κ) + ξna

2

na0 + iϕ0

2

+
(

p
p−1
2

)
i�

2p
(|
na0|p−1
na0)

(18)

with � = αp

ω
p+1
i

, ξ = λ
ωi

and ξna = λna
ωi

. In what

follows, only the dynamics of the major contributions
of the perturbation series (13) (ϕ0 and ϕna) are ana-
lyzed and are assumed to be representative of the actual
dynamics. This last claim will be verified with numer-
ical simulations further on. The complex variables are
written in polar notation; ϕ0(T1) = R0(T1)eiδ0(T1) and

na0(T1) = Rna(T1)eiδna(T1) with R0, Rna, δ0 and δna
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∈ R. Then splitting (18) in real and imaginary parts
yields after some calculations:

∂R0

ωi∂T1
= −ξ R0

2
− sin(δna − δ0)

2
Rna

R0

ωi

∂δ0

∂T1
= − R0

2
+ cos(δna − δ0)

2
Rna

0 = − sin(δ0 − δna)

2
R0 − ξna

2
Rna

0 = cos(δ0 − δna)

2
R0 − 1 − κ

2
Rna

+
(

p

p − 1

)
�

2p
R p
na

(19)

The first and third equations are combined, as well
as the third and fourth:

∂R2
0

∂T1
= −ξ R2

0 − ξna R
2
na

R2
0 =

⎡

⎢⎣ξ2na +
⎛

⎝1 − κ −
( p
p−1
2

)

2p−1 �R
p−1
2

na

⎞

⎠
2
⎤

⎥⎦ R2
na

(20)

The energy-like variables E0 = R2
0 and Ena = R2

na

and their dimensionless counterpart, Z0 = �
2

p−1 E0

and Zna = �
2

p−1 Ena , are introduced:

∂Z0

∂T1
= −λZ0 − λna Zna

Z0 =
⎡

⎢⎣ξ2na +
⎛

⎝1 − κ −
( p
p−1
2

)

2p−1 Z
p−1
2

na

⎞

⎠
2
⎤

⎥⎦ Zna

(21)

with E0, Ena, Z0 and Zna ∈ R+ according to their def-
inition. (21) describes how the (dimensionless) energy
of the major contributions of ϕ and ϕna changes over
the slow time T1. It consists of the dynamics of Z0

and a static relation, a slow invariant manifold (SIM),
restricting Z0 and Zna on the phase plane for the
slow time. The dynamics of Z0 state that Z0 always
decreases over the slow flow time, if there is damping
λ or λna . The SIM has the same shape for the class
of systems with equal ξna , κ and p and is plotted for

Zna

Z0

0
+

p=3

p=5

p=7

p=9

0 0.5 1 1.5 2

0.6

0.4

0.2

0

Z

Fig. 3 The SIM, (21), for different powers, 3 (red dash), 5 (red),
7 (black dash) and 9 (black) for ξna = 0.1. The maximum of the
SIM, Z+

0 is denoted for p = 9. (Color figure online)

Z

Z0

0.2

= 0

-0.2

0 0.5 1 1.5 2
0

0.07

0.21

0.35

na

Fig. 4 The SIM, relating Z0 and Zna , for p = 3 and κ = 0.2
(line dash), κ = 0 (line) and κ = −0.2 (dots) for ξna = 0.10

several p’s and κ’s as shown in Figs. 3 and 4. Previ-
ously, the importance of the SIM has been shown in
[9,10], where it was shown that for p = 3 and κ = 0
and sufficiently low ξna , there exist a zone of Z0 cor-
responding to three solutions of Zna on the SIM. The
existence of this zone is associated with the existence
of TET. Figure 4 suggests that this zone exists for any
p and κ , which is proven in the next section. The point
where the solutions in Zna bifurcate are used to tune
the nonlinear absorber.

The relationships in (21) are of paramount impor-
tance. Not only does it give the conditions for TET,
it allows to tune a NES and to define algebraic per-
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formances measure of TET. As such the TET can be
assessed without numerical simulation.

4.2 Slow invariant manifold analysis

It is first ascertained that the SIM, regardless of p and κ ,
has 3 solutions in Zna in a range of values of Z0. If this
holds, the NES can be tuned by using the maximum
of the SIM, as is done for the case κ = 0 & p = 3
[9,10]. The number of extrema of the SIM determines
the solutions of Zna on the SIM for a given Z0. To find
the extrema, the SIM, (21), is derived w.r.t. Zna :

∂Z0

∂Zna
=

p
( p
p−1
2

)2

22(p−1)
Z p−1
na − (1 − κ)

(p + 1)
( p
p−1
2

)

2p−1 Z
p−1
2

na

+(1 − κ)2 + ξ2na (22)

For p = 3 and κ = 0 it was already shown that there
is one maximum followed by one minimum, asserting
an interval of Z0 having three solutions of Zna . For any

power p (22) is a quadratic equation in Z
p−1
2

na . For Z
p−1
2

na

to have two real solutions, the discriminant has to be
positive; so if (1−κ)2(p+1)2−4p((1−κ)2+ξ2na) > 0
or

ξna <
(p − 1)(1 − κ)

2
√
p

(23)

which also implies that κ < 1 as the dimensionless
damping ξna ∈ R+. This condition has to be met
to ensure extrema and therefore to ensure TET. It is
remarkable that while κ = 1 ensures a performant lin-
ear absorber, it completely diminishes the performance
of a NES, as there is no TET.
As both Zna and Z0 ∈ R+ according to their definition,

the two solutions of Z
p−1
2

na,1,2 shouldbe∈ R+ as only then

the p−1
2 -root of the solution, Zna,1,2,∈ R+. The sum

and product of the solutions of a quadratic equation are
related to the coefficients of (22):

Z
p−1
2

na,1 + Z
p−1
2

na,2 = 22(p−1)(1 − κ)(p + 1)

p
( p
p−1
2

)

Z
p−1
2

na,1Z
p−1
2

na,2 = 22(p−1) (1 − κ)2 + ξ2na

p
( p
p−1
2

)2

(24)

As the two solutions should be positive, the left sides
of both equations in (24) are positive. The right sides

Zna

Z0

0.2

=0
Z  (0)0

Z (0)
0

Z   (0)na
0 0.5 1 1.5 2

0.07

0.21

0.35

Fig. 5 Two typical descents down the SIM for κ = 0 and κ =
0.2

of both equations are both positive if κ < 1 (which
itself is already a condition for TET). This confirms
that there are only two real positive Zna,1,2 for which
the derivative, (22), is zero. By computing the second
derivative, it can be shown that the first extrema is a
maximum, and the second a minimum.

It can be concluded that for any uneven positive
power p, the SIM has this same interval of three solu-
tions, as long as the condition on (23) is met. The
extrema of Zna and Z0 are:

Z
p−1
2

na± = 2p−2

p
( p
p−1
2

)
(
(1 − κ)(p + 1)

±
√

(p − 1)2(1 − κ)2 − 4pξ2na
)

Z±
0 =

⎡

⎢⎣ξ2na +
⎛

⎝1 − κ −
( p
p−1
2

)

2p−1 Z
p−1
2

na∓

⎞

⎠
2
⎤

⎥⎦ Zna∓

(25)

with the − index denoting the lower value solution
and + index the higher value of the two.

In previous research, it was shown that as long as the
initial energy of the linear mode, Z0(0), is larger than
the maximum Z+

0 , TET is initiated [9,10]. So besides
the parameter condition (23), a threshold on the initial
conditions or energy exists as well. If TET is initiated,
the slow time dynamics will behave according to (21);
not onlywill Z0 decrease, Z0 and Zna behave according
to the SIM. TET continues as long as Z0 > Z−

0 , after
which another bifurcation occurs on the SIM and Z0

will decrease slowly. Figure 5 shows a typical descent
down the SIM, when TET is initiated drawn in red, and
when TET is not initiated, drawn in blue (the blue on
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Fig. 6 The threshold of the dimensionless energy for several
powers p 3 (red dash), 5 (red), 7 (black dash) and 9 (black), in
function of κ for ξna = 0.1. (Color figure online)

the κ = 0 curve). For the case when Z0 < Z−
0 , the

curve will initiate on the left-most solution, [9,10].

4.3 Tuning absorber

With complete knowledge of the SIM and its extrema,
the NES can be tuned. As long as the initial linear mode

energy, Z0(0) = �
2

p−1 |ϕ0(0)|2 ≥ Z+
0 or, in terms of

the dimensionless nonlinear NES coefficient:

�
2

p−1 ≥ Z+
0

|ϕ0(0)|2 (26)

TET is initiated. If � is chosen too high, Z0(0) �
Z+
0 , the targeted energy transfer will be a lot slower. It

was shown in [1,9,10] that if Z0(0) = Z+
0 , the most

optimal TET occurs. It is important to have full knowl-
edge of the initial conditions ϕ0(0) to design the most
optimal absorber.

To calculate the initial conditions ofϕ0(0), theminor
contribution in (13) is neglected, so ϕ0(0) � ϕ(0) =
u̇(0) + iωi u(0). Consequently the absorber nonlinear-
ity can be calculated according to (26):

kp ≥ mnaω
p+1
i (Z+

0 )
p−1
2

(
u̇2(0) + ω2

i u
2(0)

) p−1
2

(27)

The influence of κ and p on Z+
0 is shown in Fig.

6. For increasing κ , the threshold value Z+
0 decreases.

This has several consequences. First, the optimal non-
linear coefficient kp decreases as κ increases, if the
absorber is tuned with the same initial conditions u(0)

and u̇(0). Second, κ is capable of handling changing
operating conditions. When (27) has been applied for
the case κ = 0, a decrease in initial condition can make
that Z0(0) < Z+

0 meaning no TET is engaged and
energy dissipation is slow. By retrofitting a carefully
designed κ > 0, the position of Z+

0 can be adjusted
to again ensure TET. Figure 5 shows two SIM, respec-
tively, κ = 0 (black) and κ = 0.2 (black dash) with two
different initial conditions in red andblue.While the red
descent is initially still above the threshold for κ = 0,
this is not the case if the initial conditions decrease, the
blue descent. By introducing a linear part, κ = 0.2, the
threshold value Z+

0 is lowered so that TET is engaged
once again.

5 Targeted energy transfer performance measures

Few attempts have been made to quantify performance
of TET, with the goal of improving the NES per-
formance. Often, for a numerical example, the total
amount of dissipated energy during TET is investigated
through simulation, while the speed of TET is not con-
sidered [1,3–6,14]. In these studies, the coefficient of
the NES nonlinearity is not varied to asses the change
in TET performance.

By introducing a linear stiffness in the NES, κ , and
different powers of p, the influence of these parameters
on TET performance should be investigated, not only
on the total amount of energy dissipated on theNES, but
also how the speedofTETchanges. Fromhere on, some
performance measures are defined from the SIM (21),
with only 3 parameters to consider, ξna, p, and κ . Not
only are the parameters to be considered reduced, the
expressions derived are algebraic equations, requiring
no simulations, allowing us to quickly assess influence
of any parameter on TET performance.

In [10], Nyugen defined an energy dissipation and
pumping time, both derived from an SIM, similar as
in this research. The energy dissipation is the fraction
of the energy dissipated during TET, which is sim-
ilar in meaning as the previously considered perfor-
mance measure in the literature. The major difference
is that Nyugen’s energy dissipation does not require a
numerical simulations and is algebraic, depending only
the main system and NES’s parameters. The pumping
time is a measure of TET speed. It was shown that the
TET is the fastest when the NES is tuned such that
Z(0)0 = Z+

0 . Both measures were only determined for
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Fig. 7 The energy dissipation during TET, ETET (a, c) and
pumping time Tpump (b, d); for several powers p; 3 (red dash),
5 (red), 7 (black dash) and 9 (black), (a, b) in function ξna and
κ = 0 and (c, d) in function of κ for ξna = 0.1 (c, d). Each
time Z0(0) = Z+

0 to ensure the most optimal TET. (Color figure
online)

a cubic nonlinearity and studied under variations in the
damping ξna . Just as the energy dissipation, the major
advantage of the pumping time is its algebraic nature.

Below, the dissipated energy and pumping time def-
initions of Nyugen are extended for general positive
uneven powers p and an additional (positive or nega-
tive) linear stiffnessκ ,while also introducing the ampli-
tude reduction and average TET power as new perfor-
mance measures.

5.1 Energy dissipation & amplitude reduction

The energy dissipation during TET is defined as:

ETET = 1 − Z−
0

Z0(0)
= 1 − E−

0

E0(0)
(28)

It is ameasure for the dissipation of the initial energy
in the linear mode (Z0(0)) during TET. The remaining
energy Z−

0 is absorbed very slowly.
A similar quantity can be defined for the reduction in

vibration amplitude during TET, rather than the energy:

ATET = 1 −
√

E−
0

E0(0)
= 1 − R−

0

R0(0)
(29)

with R−
0 =

√
E−
0 .

These measures are only relevant if TET will occur,
so if E0(0) > E+

0 . Figure 7a shows ETET in function
of ξna and p. The amount of energy dissipated during
TET decreases as the damping increases. This will be
the limiting factor in the choice of ξna . ETET is also
plotted in function of κ and p as shown in Fig. 7c. It
is observed that if p increased or κ decreases, more of
the initial energy is dissipated during TET.

5.2 The pumping time

Consider the slow-time change of the energy stored in
the relative absorber displacement, derived from (21):
1

ωi

∂Zna

∂T1
=

−ξna Zna − ξ Z0

p(
p

p−1
2

)
2

22(p−1) Z p−1
na − (1 − κ)

(p+1)(
p

p−1
2

)

2p−1 Z
p−1
2

na + (1 − κ)2 + ξ2na

(30)

When neglecting the main system’s When neglect-
ing the main system’s modal damping ξ , separation
of the variables Zna and T1 is possible. When subse-
quently integrated, this yields:

I (Zna) =
p
( p
p−1
2

)2

(p − 1)22(p−1)
Z p−1
na

−
( p
p−1
2

)
(1 − κ)(p + 1)

p−1
2 2p−1

Z
p−1
2

na

+
(
(1 − κ)2 + ξ2na

)
ln(Zna) = C − ωiξnaT1

(31)

with C the integration constant. In Sect. 8, the effect of
modal damping is investigated, which does not allow
separation of variables. It is not derived here as some
observations of the simulations need to be made first.

The expression (31) can be used to determine the
time between two energy states Zna,1 and Zna,2:

εT1→2 = 1

2πξna

(
I (Zna,1) − I (Zna,2)

)
(32)

with T1→2 the time relative to the linear mode’s nat-
ural period

(
T1(Zna,1) − T1(Zna,2)

) · ωi
2π . On the SIM,

Z0(0) has a corresponding Zna(0) (Fig. 5). If the ini-
tial energy Zna(0) exceeds the energy threshold (so
Z0(0) > Z+

0 ), TET will persist from Zna(0) until the
minimum of the SIM, Z+

na , allowing us to define the
pumping time Tpump as:

εTpump = 1

2πζna

(
I (Zna(0)) − I (Z+

na)
)

(33)
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Both the pumping time Tpump and energy dissipa-
tion ETET are algebraic expressions and are determined
without any numerical simulation, which allows us to
quickly asses the influence of parameter changes on
the performance of TET. This is a huge advantage over
previous TET performances measures, which require
simulations to be assessed. In Fig. 7b, the optimal
(Z0(0) = Z+

0 ) pumping time is shown in function of
ξna and p for κ = 0. An increased damping will speed
up the TET, however, a decreased amount of energy
will be dissipated. To ensure a significant fraction of
the energy is dissipated, ξna will be chosen as 0.1 in
the numerical examples.

In Fig. 7d, the optimal (Z0(0) = Z+
0 ) pumping

time is shown in function of κ and p. The pumping
time increases as p > 3 and κ < 0 and decreases as
κ > 0 increases. By observing both figures in Fig. 7,
increasing κ to decrease Tpump comes at a cost, as ETET

decreases as well.
With regard to TET speed, in [6], an opposite con-

clusion was stated for p > 3. It is claimed that for
increasing power p, TET is expedited, while the oppo-
site is claimed here. The difference between this paper
and [6], is that in their given numerical example, the
nonlinear coefficient αp in [6] was constant while only
the power p changed. This way, the NES coefficient
was not optimally tuned for each power, and seem-
ingly an increased power sped upTET.While theirNES
for p = 7 was near optimal tuning, the same αp for
p = 3 and p = 5 leads to a highly unoptimally tuned
NES.

For the class of systems with same ξna, p and κ ,
(33) still depends by the mass ratio ε. By inspecting
(33), one would advise increasing ε to decrease Tpump,
achieving faster TET. Yet from an application point of
view, a small ε is a highly desired feature for vibra-
tion absorbers. Besides practical limitations, the whole
semi-analytic analysis also relies entirely on a small
ε. Therefore, just increasing the mass ratio is not sug-
gested to optimize the NES. Also, the actual dynamics,
(4), do not start on the SIM, as initially, Zna(0) does
not depend on Z0(0). The SIM only hold on a slow
time scale. In fact, simulations show a transient behav-
ior before attracted to the SIM, [10]. To ensure the
attraction to the SIM, Tpump, should be at least a few
periods, or else no TET will occur. This also means ε

should not be too large.

5.3 The average TET power, P̄TET

With both a measure for energy dissipation (ETET) and
speed (Tpump), an average power-like measure can be
defined:

P̄TET = ETET

Tpump
(34)

6 Numerical study and comparison of actual
dynamics with slow flow

In the previous section, the nonlinear dynamics of (9)
have been significantly simplified to a linear dynamic
equation and a nonlinear static relation (21). From these
simplified equations, the conditions to ensureTETwere
stated and NES tuning rules were established. Fur-
thermore, several performance measures for TET were
derived, most importantly the pumping time Tpump and
the dissipated energy ETET. Also, several properties
of the nonlinear absorber were discussed; κ > 0 can
reduce the nonlinear coefficient kp, κ > 0 hastens the
targeted energy transfer, while increasing p and κ < 0
on the other hand impede TET.

When compared to existing literature, the strength
in the performance measures presented in previous
section, is that they are algebraic, and do not require
any numerical simulation to be determined. All of the
measures and properties were derived from the so-
called slow time dynamics (21). However, the question
remains if these measures hold their merit for actual
numerical simulations of (4). Therefore, the actual
dynamics and the slow flow dynamics are simulated
and compared for similarity for the SDOF main sys-
tem presented in Fig. 8, with numerical values found
in Table 1. The choice is made for ξna = 0.1 as Fig.
7a, b shows that a significant amount of the energy is
dissipated in a short time.

6.1 Performance measures and tuning

For the given ξna = 0.1, the influence of κ and p on
the TET performance was plotted as shown in Fig. 7.
Increasing κ has a positive influence on the pumping
time Tpump, however this came with a sacrifice, as the
dissipated energy ETET also decreases.

TheNES is tuned for ẋ = 0.1 for several choices ofκ
and p, with coefficients kp and klin, andmeasures ETET
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xna

Fig. 8 An SDOF main system with a NES

Table 1 Numerical values for SDOF system, Fig. 8. The
absorber damping is chosen as such that ξna = 0.1

Parameter Value

m [kg] 1

k [ Nm ] 1

c [Nsm ] 0

mna [kg] 0.02

cna [Nsm ] 0.002

Table 2 The nonlinear coefficient, dissipated energy during
TET, ETET and pumping time Tpump for several p and κ

p & κ Z+
0 kp klin ET Tpump

ωi
2π

p = 3 κ = 0 0.2020 0.444 0 0.940 63.9

p = 3 κ = 0.2 0.1047 0.230 0.004 0.908 40.13

p = 3 κ = −0.2 0.3467 0.763 −0.004 0.958 92.95

p = 5 κ = 0 0.3677 29.75 0 0.967 128

p = 7 κ = 0 0.4761 2373 0 0.975 176

and Tpump in Table 2. The nonlinear coefficient kp is
chosen 10% higher than its minimal value determined
with (27), so Z0(0) is slightly higher than Z

+
0 , to ensure

the actual fast dynamics are attracted to the SIM [9,10].

6.2 Comparison of slow flow and actual dynamics

To compare an actual numerical simulation of (4) with
slow flow simulation (21), equivalent energy variables
are defined for the actual, fast, dynamics:

Time [s]

x [m] 

-0.1

-0.05

0

0.05

0.1

(a)

Time [s]

0 50 100 150 200

0 50 100 150 200

xna-x [m]

-0.4

-0.2

0

0.2

0.4

(b)

Fig. 9 Numerical simulation of system Fig. 8 for ẋ(0) =
0.1, p = 3 and ξna = 0.1. Main system vibration (a) and NES
(b) for κ = 0 (black), κ = 0.2 (red) and κ = −0.2 (blue). (Color
figure online)

E0,fast = u̇2 + ω2
i u

2

Ena,fast = v̇2 + ω2
i v

2 (35)

The dissipated energy during TET, ETET and the
pumping time Tpump are also given for each case. To
confirm that these metrics actually hold, the system
dynamics are simulated next.

6.3 Simulations

First, the case where p = 3 is compared for the dif-
ferent values of κ . Fig. 9a, b shows the time evolutions
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Time [s]
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Ena

0
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0.2

Fig. 10 Comparison of slowflow dynamics (dashed) with actual
dynamics (solid) for κ = 3 (black), κ = 0.1 (red) and κ = −0.1
(blue)). (Color figure online)

of, respectively, the main system and the NES of the
numerical simulation of the actual dynamics. Clearly
the linear component of the stiffness influences the
dynamics as expected; if κ > 0 TET is faster and con-
sequently the vibrations in themain system are reduced
a lot faster then when κ = 0 and κ < 0. It is remark-
able that the addition of a such small linear stiffness,
klin = ±0.004 N

m changes the performance to such an
extent. The amount of dissipated energy during TET
is predicted as well, as when κ = 0 and κ < 0 more
energy is dissipated then for κ > 0.

To verify the actual value of the performance met-
rics, the slow flow is simulated and the evolutions of
E0 and Ena are overlaid by their equivalent energies
from the numerical simulation of (4), (35). The result
is shown in Fig. 10. The pumping time is clearly seen in
the slow dynamics as either the jump in Ena or the sud-
den change of slope in Ena . E0,fast clearly follows its
slow flow equivalent but Ena,fast behaves differently.
Initially, the actual dynamics need to be attracted to
the SIM. This happens while the NES heavily vibrates.
This attraction part is also called nonlinear beating [1]
for its excessive vibrations. After the nonlinear beating,
Ena,fast roughly follows its slowflow equivalent. As the
energy is dissipated in the NES, E0 will descent to its
minimum on the SIM, E−

0 . On the slow time scale, Ena

then jumps, while this immediate change of value is
not followed at all by the fast dynamics. Even then, the
pumping time Tpump and dissipated energy ETET, both
derived metrics from the slow flow, are still valuable
for the actual system. It is clearly visible in the dynam-

Time [s]

E0

0

0.005

0.01

0 50 100 150 200 250

Ena

0

0.1

Fig. 11 Comparison of slow flow dynamics (dashed) with actual
dynamics (solid) for p = 3 (black), p = 5 (red) and p = 7 (blue).
(Color figure online)

ics of E0,fast, Fig. 9a, that the significant reduction in
vibration (= TET) does cede roughly around Tpump and
the absorbed energy during TET does roughly equal the
dissipated energy. These simulations show that the slow
flow dynamics are representative for the actual dynam-
ics, and that slow flow performance measures are very
valuable in predicting the performance of theNES.This
allows us to quantifyTETperformance, and to optimize
nonlinear absorbers without performing many simula-
tions, as (28) and (33) are simple algebraic expressions.
To visualize the dynamics, the phase plane of Z0 and
Zna is plotted as shown in Fig. 12a–c. The slow flow
dynamics follow theSIM,while the actual, fast, dynam-
ics first need to be attracted to the SIM, only follows
the SIM on average, and behaves differently near the
bifurcation point.

The influence of the power p on the dynamics is
shown in Fig. 11. Again the actual pumping time and
energy dissipation behave as predicted in Table 2; the
higher the power, the slower the TET. Similar as before,
the SIMs are plotted as shown in Fig. 12d, e, yet com-
pared to Fig. 12a–c, the slower the TET is, the better
the actual dynamics follow the slow time SIM.
From the numerical simulations in this section it can
be said:

– As predicted from the slow flow dynamics, the TET
slows down for higher power p and the negative
linear part κ .

– By defining a similar energy as the slow flow
E0, Ena , but for the actual dynamics, (35), it is seen
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Fig. 12 Comparison of Zna and Z0 both from the slowdynamics
simulation, which follows the SIM (black) and from the actual
dynamics (red), calculated from (35). a–c are for p = 3, κ = 0,
0.2 and −0.2, respectively. d, e are for p = 5 and p = 7. (Color
figure online)

that the slow flow dynamics, when simulated, are
representative for the actual dynamics

– The algebraic performance measures Tpump and
ETET hold up for the actual dynamics. As a con-
sequence, the influence of parameters on the per-
formance of the NES can be determined without
any numerical simulation.

– The relation E0(Ena) follows the exact SIM for
the slow dynamics. In the fast dynamics, first, the
dynamics need some time to be attracted to theSIM.
Then, the slower the TET is, the more the actual
dynamics fit the SIM shape of the slow flow. This
means that the performancemeasures aremore pre-
cise for cases when TET is suboptimal.

7 Multi-modal vibrations and resonance capture
cascading

The ability of a single NES to absorb multi-modal
vibrations is one of its major advantages. The mech-

anism of multi-modal vibration absorption is called
resonance capture cascading (RCC). It was first thor-
oughly investigated in the context of NES in [15]. In
short the mechanism of RCC is:

– Themain system is subjected to an initial condition,
meaning that each mode of the main system has
an initial energy. The main system starts to vibrate
according to its modes

– The NES will start to vibrate with a single-mode
ωi , until a bifurcation occurs when the energy in
mode i has decreased significantly. TET has actu-
ally occurred for mode i

– Next, if there is enough energy in mode i − 1, the
NES vibrates with mode ωi−1, also until a bifurca-
tion occurs,

– This cascading of modes continues until mode 1,
after which the vibrations in the main system have
been reduced for all modes.

This way, the vibrations of a multi-modal main sys-
tem is absorbed by a single NES. This is in sharp
contrast with linear vibration absorbers, where one
absorber is able to dissipate vibrations of one mode
only. Kerschen also called it multi-modal targeted
energy transfer [16], as just like the single-mode TET,
a certain initial energy was required to initiate strong
energy transfer. Also, he showed that the initial energy
level determines which mode i initiates the RCC.
Contemporary works on the subject of RCC focus
on merely showing the existence of the phenomenon,
while optimizing the performance or tuning a NES
for specific RCC behavior has not been considered.
Recently [14], a numerical study on the performance
of a NES on an MDOF system was performed. How-
ever, the author of that paper only analyses a single-
mode case, did not consider RCC, and performedmany
numerical simulations to obtain surfaces addressing the
performance.Here, the objective is to analyzeRCCper-
formance algebraically, without any numerical simula-
tions In this section, the tuning rules and performance
measures derived for single-mode vibrating systems
are extended to a multi-modal vibration main system.
Although all the theoretical concepts of this research
were developed for single-mode vibrating systems (be
it SDOF or MDOF main system), it is shown that the
algebraic performance measures ETET and especially
Tpump are still valid and valuable for multi-modal sys-
tems. This is because at a given time, only a single
mode interacts with the NES, even though the main
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system vibrates with multiple modes. First, a kind of
modal decomposition of the initial condition is intro-
duced. This artificial modal decomposition will allow
to asses each mode separately, as a single-mode case,
allowing us to apply the theory of Sects. 4 and 5.

7.1 Modal decomposition of initial conditions

When the NES initially vibrates with mode ωi , the
energy of the other modes is either kept in the system,
or is dissipated in the main system’s damping. Here the
former is assumed, so C = 0 in (4). This way, the ini-
tial energy of each mode stays in the system until the
mode is cascaded in the RCC.

The concepts of energy dissipation ETET and pump-
ing time Tpump, although developed for single-mode
vibrating systems, are now expanded to the multi-
modal RCC, to allow us to quantity the influence of
κ and p on RCC performance. For this, the initial con-
ditions of the physical coordinates are decomposed as
initial modal conditions:

ẋ(0) =
n∑

k=1

ẋ [k](0) =
n∑

k=1

ekq̇k(0) (36)

with ẋ [k](0) = ekq̇k(0) ∈ R
n the hypothetical initial

speed as if only mode k is present. From here on only
an initial speed is considered, but (36) can easily be
expanded to include initial displacements as well. The
RCC will begin at mode i , and the NES initially only
vibrates with ωi . If, hypothetically, the whole system
only vibrates with mode i , the initial condition on the
system would be

ẋ [i](0) = ei q̇i (0) (37)

This hypothetical situation allows us to apply tuning
for this single-mode vibration. The hypothetical initial
speed at the attachment point x� of the NES is ẋ

[i]
� (0) =

ei (�)q̇i (0) �= ẋ�(0), which allows for tuning with (27).
In this way the initial energy is associated with mode
i and the NES will start to vibrate with ωi , while the
remaining modes stay contained in the main system,
not interacting with the NES.

7.2 Cascading time

From the hypothetical single-mode vibration i with
initial condition ẋ [i]

0 , both an ETET,i and pumping

Table 3 Numerical values for MDOF and absorber system, Fig.
13. The absorber damping is chosen as such that ξna = 0.1 for
mode 3

Parameter Value

mk [kg] 1

kk [ Nm ] 1

ck [Nsm ] 0

mna [kg] 0.06

cna [Nsm ] 0.0108

time Tpump,i can be calculated. For the same NES,
an ETET,i−1 and pumping time Tpump,i−1 is found by
assuming a single vibration with the next mode i − 1
and its corresponding initial condition on the attach-
ment point ẋ [i−1]

� (0) = ei−1(�)q̇i−1(0). (The NES was
tuned for mode i , it is not retuned for mode i −1). This
proceeds from mode i − 2 until mode 1. As RCC is a
multi-modal TET, Tpump,i is interpreted as the pump-
ing time of TET for mode i . Because the main system
is undamped, the initial energy of mode i − 1 is kept
completely in the system. So after TET of mode i , TET
for mode i −1 will occur for Tpump,i−1, and so on until
mode 1.

It is now postulated that this single-mode pumping
time Tpump,k is actually the time of targeted energy
transfer with mode k, before cascading to mode below
it, k − 1. The total cascading time then is

Tcascade =
i∑

k=1

Tpump,k · ωk

2π
(38)

Although there is no proof for this to hold, and the
modal decomposition in quite artificial, the fact that
previous research show that the NES vibrates sequen-
tially and in descending order with the resonance fre-
quencies of the main system motivates this hypothesis.
Next, a numerical example will be presented that con-
firms the hypothesis.

7.3 Test of hypothesis for p = 3 and κ = 0

To numerically verify the cascading time hypothesis,
a 3DOF main system, with numerical values in Table
3, is fitted with a NES on x2, Fig. 13. The unity modal
mass scaled eigenvector matrix of the main system and
the eigenfrequencies are:
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m1

m2

mna

m3

k1 c1

k2 c2

k3 c3

x1

x2

x3

Fig. 13 A 3 degree MDOF system with a NES on floor 2 (a)
and a NES on floor 1 and 2 (b), used in the numerical examples
of, respectively, Sect. 7

E =
⎡

⎣
0.328 − 0.737 0.591
0.591 − 0.325 − 0.737
0.737 0.591 0.328

⎤

⎦

ωi =
⎡

⎣
0.445
1.247
1.802

⎤

⎦ rad

s
(39)

The absorbermass is chosen as 2%of the entiremain
system’s mass. The initial condition are ẋ1(0) = 0.1 m

s
and ẋ2(0) = ẋ3(0) = 0 m

s , decomposed according to
(36):

ẋ(0) = e1q̇1(0) + e2q̇2(0) + e3q̇3(0) ⇔
⎡

⎣
0.1
0
0

⎤

⎦ =
⎡

⎣
0.328
0.591
0.737

⎤

⎦ · 0.0328

+
⎡

⎣
−0.737
−0.328
0.591

⎤

⎦ · − 0.0737 +
⎡

⎣
0.591

− 0.737
0.328

⎤

⎦ · 0.0591

(40)

Notice that on the attachment point of the NES, x2,
there is no initial condition. Now, the initial condition
decomposition is used to tune the NES. The NES is
tuned to mode 3, so that each mode is captured in
the cascade. The hypothetical initial conditions of the
single-mode vibration ω3 is:

Table 4 The nonlinear coefficient, dissipated energy during
TET, ETET and pumping time Tpump

p & κ Z+
0 kp klin Tpump,3

ω3
2π

p = 3 κ = 0 0.2020 74.1 0 21.8

p = 3 κ = 0.1 0.1480 54.3 0.0195 17.5

p = 3 κ = −0.1 0.2678 98.2-0.0195 26.5

p = 5 κ = 0 0.3677 29.75 0.967 43.6

p = 7 κ = 0 0.4761 2373 0.975 59.9

Table 5 Pumping time for each mode and the cascade time

p & κ Tpump,3
ω3
2π Tpump,2

ω2
2π Tpump,1

ω1
2π Tcascade

p = 3 κ = 0 21.8 140 1066 1227

p = 3 κ = 0.1 17.5 124 − −
p = 3 κ = −0.1 26.5 158 806 991

p = 5 κ = 0 43.6 197.5 719 960

p = 7 κ = 0 59.9 241.3 664 965

ẋ [3](0) = e3q̇3(0) ⇔

ẋ3(0) =
⎡

⎣
0.591

−0.737
0.328

⎤

⎦ · 0.0591 =
⎡

⎣
0.0349

−0.0436
0.0194

⎤

⎦
(41)

Now there is an initial condition on x2, although
artificial, ẋ [3]

2 (0) = −0.0436, and the absorber can
be tuned according to (27). Table 4 shows the numer-
ical value of kp. With the tuned MDOF system, 4
numerical simulations are now performed. First, all
three hypothetical single-mode vibrations are actually
simulated with initial conditions, respectively, being
ẋ [3](0), ẋ [2](0) and ẋ [1](0), forwhich the pumping time
is found in Table 5. These measures are determined
before any simulation and suggest the lower the mode,
the slower theTET.Table 6 reports theTETparameters.
It can be seen that the initial values of the dimension-
less energies Z0(0) are much higher than the threshold
values Z+

0 for both modes 1 and 2. The more the initial
energies exceeds the threshold value, the longer TET
takes.Also note that ξna , although chosen as 0.1 for tun-
ing the NES for mode 3, increases as the frequency of
each mode decreases as ξna = cna

mnaωi
not only depends

on the actual damping constant cna and mass mna , but
on the modal frequency as well.

For each single-mode simulation, Fig. 14 shows its
expected behavior and corresponding pumping time
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Table 6 TET parameters for each mode. In all cases, tuning is done on mode 3. However for the other modes, the threshold values and
xina and κ change and have significant effect on TET performance

p & κ Z+
0,m3 Z+

0,m2 Z+
0,m1 Z0,m3(0) Z0,m2(0) Z0,m1(0) κm3 κm2 κm1 ξm3 ξm2 ξm3

p = 3 κ = 0 0.2020 0.2070 0.2803 0.2222 0.2984 11.8282 0 0 0 0.1 0.1445 0.4049

p = 3 κ = 0.1 0.1480 0.1054 − 0.1628 0.2187 8.6680 0.1 0.2088 1.6394 0.1 0.1445 0.4049

p = 3 κ = −0.1 0.2678 0.3603 3.9277 0.2946 0.3956 15.6825 −0.1 −0.2088 −1.6394 0.1 0.1445 0.4049

p = 5 κ = 0 0.3677 0.3739 0.4595 0.3857 0.3584 5.0702 0 0 0 0.1 0.1445 0.4049

p = 7 κ = 0 0.4761 0.4831 0.5777 0.4914 0.4039 4.0535 0 0 0 0.1 0.1445 0.4049

Time [s]
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Time [s]

u[m]

-0.02

0
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Time [s]
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0.05
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u[m]
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(c)

Fig. 14 The hypothetical single mode of MDOF system Fig.
13, first mode (a), second mode (b) and third mode (c), with the
upper plot the linear mode and lower the relative nonlinear mode

found in Table 5. These simulations are not different
from those performed in Sect. 6, even though those
simulations are performed on an SDOF system. This
is because the MDOF system considered here is only
excited in a single mode, with now u = x2 + εxna and
v = x2 − xna .

Next, the actual multi-modal system is simulated
with ẋ1(0) = 0.1, and is compared to each single-
mode system. The novelty of this section are multi-
modal vibrations on which the cascading time hypoth-
esis is tested, presented in Fig. 15. From these figures,
it is seen that the NES vibration, Fig. 15a, is indeed
cascading from mode 3 to mode 1, of which the dura-
tion and magnitude corresponds to the each individual
hypothetical single-mode vibration , Fig. 14. It is as
if we take relative NES displacement v from Fig. 14c,
then after TET of mode 3, paste the v from 14b, and

this TET paste the v 14a. This sequential behavior can
be formulated with the Heaviside function H(t):

xna = x [3]
na · H(t) + x [2]

na · H

(
t − Tpump,3

ω3

2π

)

+ x [1]
na · H

(
t − Tpump,2

ω2

2π

) (42)

This sequential absorption of modes is best seen
on the wavelet transform of the NES vibrations, Fig
.15b, c where the TET of each mode does indeed take
the beforehand computed pumping time. To asses the
vibrations of the main system, the attachment point
vibrations x2 is plotted as shown in Fig. 15d. A steady
decline of vibration levels is observed until TET has
ceded for mode 1, after which vibrations decrease sig-
nificantly slower than before.

The sum of the pumping times, Table 5, does indeed
correspond to the total cascading time, the total time
where the NES is active and reduces vibrations in the
main system significantly. Although the time it takes
to dissipate all modes seems long, up to 1000 s, note
that the system has slow eigenfrequencies and that a
single linear absorber would only dissipate the third
mode while the other modes are absorbed a lot slower
than the case of a single nonlinear absorber. See [2]
for a comparison of a linear and nonlinear absorber for
multi-modal vibration damping.

To summarize, the following observations were
made from the simulation

– For any initial conditions on an MDOF system,
hypothetical single-mode vibrations can be con-
structed through a modal decomposition of the ini-
tial conditions, which allow single-mode NES tun-
ing, which provide a Tpump and ETET and show
a typical single-mode TET when the hypothetical
single-mode vibrations are simulated.

– Simulating the system with the actual initial con-
ditions shows that the NES vibrates initially only
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Fig. 15 The actual numerical simulation of compound system
Fig. 13, with a the relative NES vibration v, b, c the wavelet
transform of (a) and (d) the vibrations of the attachment point
x2 for p = 3

with the tuned mode i . The NES vibrates with
this frequency ωi for as long as the hypothetical
single-mode Tpump and also with same magnitude.
Then the NES cascades to mode i − 1, vibrates for
Tpump,−1 with frequencyωi−1, after which the NES
cascades for mode i − 2 and so on.

– It can be observed that the total cascading time
Tcascade can be approximated with the sum of each
individual pumping time Tpump of each mode that
participates in the cascade, conforming the hypoth-
esis of the total cascading time (38).

– For the whole duration of the cascading time
Tcascade, the vibrations in the main system are
steadily absorbed, mode after mode. After this
duration, the vibrations have decreased signifi-
cantly, and are only very slowly reduced.

The influence of p and κ on Tpump for single modes
has been discussed in Sect. 5 and 6. Next, their influ-
ence on the cascading time will be investigated. For
each parameter combination, the NES is tuned for the
third mode, the cascading time will be calculated first,
after which numerical simulations are performed on the
actual MDOF system to verify the cascading perfor-
mance. Only the wavelet transforms of the NES vibra-
tions and the vibration of the attachment point x2 will
be presented. The pumping/cascading time will still be
computed by decomposition of initial conditions.

7.4 Influence of power p

Increasing the power p increased the pumping time
in the single-modal case. Here, it is investigated what
influence it has on the cascading time.The pumping and
cascading times for a NES tuned to the third mode with
p = 5 and 7, for the same initial conditions (40), can
be found in Table 5. As the NES is tuned for the single-
modal case of mode 3, the pumping time increases, just
like the single-mode case in Sect. 6. While the pump-
ing time of the third mode for p = 5 doubles compared
to the p = 3 case, for the second mode, the pumping
time increases only by about 41 %. Most remarkable,
however, is the 32 % decrease in the pumping time of
the first mode. As mode 1 has the biggest contribu-
tion in the total cascading time, the cascading time also
significantly decreases, resulting in a more performant
RCC.

The numerical simulation confirms this decrease in
cascading time, see the wavelet transform of Fig. 16b
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Fig. 16 The actual numerical simulation of compound system
Fig. 13, with a, b the wavelet transform of the relative NES
vibration v and c the vibrations of the attachment point x2 for
p = 5
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Fig. 17 The actual numerical simulation of compound system
Fig. 13, with a, b the wavelet transform of the relative NES
vibration v and c the vibrations of the attachment point x2 for
p = 7

for p = 5 and Fig. 17b for p = 7 compared to the
wavelet transform of p = 3, Fig. 15c. The vibration
of x2, Figs. 16c and 17c, decrease a lot faster than for
p = 3; Fig. 15d.

To explain the decrease in pumping time for mode 1,
the SIM in E0 and Ena is shown for the different modes
and powers, Fig. 18. It can be seen that for the tuned
mode, 3, E+

0 = E0(0) is always the same, as it is tuned
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Fig. 18 The (nondimensionless) SIMs for a mode 1, b mode2
and c mode 3, for p = 3 (black), p = 5 (red) and p = 7 (blue).
(Color figure online)

to this mode. This way, the TET for mode 3 is always
as fast as possible for any p, Fig. 18c. However, for
mode 2, the peak of the curve , E+

0 , begins to increase
slightly, Fig. 18b, while it dramatically increases for
mode 1, Fig. 18a, if p is increased. As E+

0 gets closer
toward E0(0), this can potentially expedite TET, as it is
more optimal.However as seen in the single-mode case,
this optimal TET is slower for higher p. The net result
of this expediting and impeding effect still increases
the pumping for mode 2. For mode 1, the expediting
effect gets the upper hand in the net result.

What follows next, is a proof that E+
0 will increase

for increasing powers p, but only for the modes lower
than the tuned mode.

For fixed initial condition, the initial energy of each
mode of a main system E0,k(0), k ∈ 1, ..., n is a
given constant, calculated from the modal initial con-
ditions (36). The NES is designed for a mode ωi .
The mode indexes correspond to increasing frequency,
ω1 < ω2 < ... < ωn . The dimensionless nonlinear-
ity � of power p is tuned so that the initial energy of
mode i, E0,i (0) corresponds with the threshold of the
dimensionless energy, Z+

0,i

Z+
0,i = �

2
p−1 E+

0,i = α
2

p−1
p

ω
2 p+1
p−1

i

E+
0,i = α

2
p−1
p

ω
2 p+1
p−1

i

E0,i (0)

(43)
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with E+
0,i the energy corresponding to the threshold,

which for mode i equals E0,i (0), as it is this mode
we tune toward. From (43), the NES is tuned, and the
nonlinear coefficient αp follows.

For mode i−1 the threshold is expressed as follows:

Z+
0,i−1 = α

2
p−1
p

ω
2 p+1
p−1

i−1

E+
0,i−1 (44)

Here E+
0,i−1 depends on p, themode i and αp, and does

not equal E0,i−1(0). The ratio of (43) and (44) is:

E+
0,i−1

E0,i (0)

ω
2 p+1
p−1

i

ω
2 p+1
p−1

i−1

= Z+
0,i−1

Z+
0,i

= 1 (45)

with
Z+
0,i−1

Z+
0,i

= 1 holding if ξna � 1 −
(

p
p−1
2

)

2p−1 Z
p−1
2

na and

κ = 0, see the SIM formula (25). To make the expo-
nents in (45) more manageable, the natural logarithm
is taken on both sides:

ln(E+
0,i−1) = ln(E0,i (0)) + 2

p + 1

p − 1
ln

(
ωi−1

ωi

)
(46)

If E+
0,i−1 increases, so will its logarithm, as the natu-

ral logarithm is a monotonically increasing function.
Deriving with respect to the power p yields:

∂ln(E+
0,i−1)

∂p
=

�������0
∂ln(E0,i (0))

∂p

− 4p

(p − 1)2
ln

(
ωi−1

ωi

)
(47)

with E0,i (0) constant, as the initial conditions stay the
same.

As ln(
ωi−1
ωi

) < 0, the expression (47) is always pos-
itive. This means that for increasing powers, the energy
threshold E+

0,i−1 increases. Formodes lower thanωi−1,
this increase is even more pronounced as the fraction
ωi−2
ωi

, ωi−3
ωi

, …gets smaller and smaller.

As p increases, the term 4p
(p−1)2

diminishes, so will

the increase of E+
0,i−1 diminish in function of p. As

E+
0,i−1 increases for p, while E0,i−1(0) is constant,

these two energies come closer. This way, the TET
of mode i − 1 is potentially expedited, as the closer
E0,i−1(0) to E+

0,i−1, the more optimal and therefore
faster the TET will be. Increasing the power p will still
have an impeding effect on TET, with a net result pos-
sibly being an increased or decreased Tpump, as seen in
the above simulation. However the lower the frequency

of the mode, the more likely Tpump is decreased. There
are diminishing returns as the cascading time of p = 7
is already slightly higher than p = 5.

To summarize:

– Tuning a NES for p > 3 increases Tpump for
the tuned mode, as expected from the single-mode
case. However, Tpump of the other modes seems to
either increase less significantly or even decreases.
This can result in an actual decrease Tcascade for
p > 3 compared to p = 3.

– Numerical simulations confirmed this. In total, the
cascading time decreased and the vibrations of the
main system are absorbed faster.

– It was shown that for modes lower than the tuned
mode i , the threshold energy E+

0 increases for
increasing p getting closer and closer to E0(0)

– The net result of the expediting effect of increased
E+
0 and the impeding effect of increased p can

either be an increase of decrease in pumping time.
The lower the mode frequency, the more the expe-
diting effect gets the upper hand.

7.5 Influence of linear part κ

In the single-mode case, a κ > 0 decreased Tpump

while κ < 0 caused an increase. Here it is investigated
whether there also is an expediting effect for modes
lower than the tuned one in the multi-modal case. As
with the dimensionless damping ξna , κ also depends
on ωi , κ = klin

mnaω
2
i
. A proposed κ is associated with the

mode which is used to tune the NES. For the modes
below the tuned mode, κ will increase in magnitude.
For κ > 0, this could lead to the condition for TET
(23), κ < 1, not being met.

The pumping and cascading time are calculated for
p = 3 and κ = 0.1 & −0.1, Table 5. Keep in mind
that although the NES is tuned for mode 3, to calculate
Tpump for mode 2 and 1, the κ �= 0.1 or−0.1, see Table
3 for their values. κ = 0.1 for mode 3 corresponds
to κ = 1.6394 for the first mode, which means the
condition for TET (23) is not met (κ > 1), there is no
bifurcation in the SIM so no Tpump can be calculated
for more 1. The NES tuned with κ = −0.1 for mode 3
or κ = −1.6394 for mode 1, TET conditions are still
met, κ < 1, and Tpump of mode 1 has even decreased
compared to κ = 0. The expediting effect for κ < 0 can
again be explained with the increase of E+

0 for modes
lower than the tuned ones, Fig. 21.
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Fig. 19 The actual numerical simulation of compound system
Fig. 13, with a, b the wavelet transform of the relative NES
vibration v and c the vibrations of the attachment point x2 for
p = 3 and κ = 0.1

Numerical simulations show both the predicted
Tpump and Tcascade as well as the absence of TET
for mode 1 for κ = 0.1, Fig. 19b and Fig. 20b for
κ = −0.1. The vibrations in both main system and
NES dissipate much slower for κ = 0.1 after TET of
mode 2, Fig. 19, than κ = −0.1, Fig. 19c. This can
be explained with the SIMs shown in Fig. 20c. As E+

0
increased enormously for mode 1, for κ = −0.1, the
retarding effect associatedwith a negative κ is compen-
sated. An additional advantage for negative κ is that the
conditions for TET are always met.

– While κ > 0 decreases pumping time of the modes
where TET conditions are still met, the lower the
mode frequency, to more likely the TET conditions
are not met and the vibrations of the modes are
reduced very slowly

– For κ < 0 there is both an impeding effect (κ < 0)
and an expediting effect (increasing E+

0 for lower
modes) with as a net result either an increase
or decrease in pumping time. As with increasing
power p, the lower frequency the mode has, the
more likely a decrease in pumping time.

– Numerical results confirmed this and showed that
the system’s vibrations persist very long for κ > 0,
as conditions for TET are not met for all modes.
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Fig. 20 The actual numerical simulation of compound system
Fig. 13, with a, b the wavelet transform of the relative NES
vibration v and c the vibrations of the attachment point x2 for
p = 3 and κ = −0.1
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Fig. 21 The (nondimensionless) SIMs for a mode 1, b mode2
and c mode 3, for κ = 0 (black), κ = 0.1 (red) and κ = −0.1
(blue). (Color figure online)

8 Performance for more general mechanical
systems

While deriving the SIM, and determining the pumping
and cascading time, several assumptions were made.
Here the influence of relaxing two of these assumptions
is investigated; 1) allow modal damping to calculate
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pumping and cascading time and 2) nonlinearities in
the main system (up to O(ε0)).

8.1 Introducing modal damping

The modal damping itself does not change tuning, as
it is not present in the expression of the SIM, the 2nd
equation in (21). It will however increase dissipation
and thus expedite TET. No modal damping was intro-
duced to easily solve (30):

1

ωi

∂Zna

∂T1

= −ξna Zna − ξ Z0

p(
p

p−1
2

)
2

22(p−1) Z p−1
na − (1 − κ)

(p+1)(
p

p−1
2

)

2p−1 Z
p−1
2

na + (1 − κ)2 + ξ2na

(48)

When the modal damping ξ = 0, separation of vari-
ables is simple and subsequent integrating result in the
pumping time. Here, an expression for the pumping
time with modal damping is sought. Trying to separate
the variables and dividing both sides by Zna yields:

(
−ξna − ξ

Z0

Zna

)
∂T1ωi =

( p
( p
p−1
2

)2

22(p−1)
Z p−2
na

− (1 − κ)

(p + 1)
( p
p−1
2

)

2p−1 Z
p−3
2

na

+ (1 − κ)2 + ξ2na

Zna

)
∂Zna

(49)

The right side entirely depends on Zna , but on the
left, the term Z0

Zna
prevents complete separation of vari-

ables. Consider only the left part of (49), where the
SIM relation,2nd equation of (21), removes Z0:

⎛

⎜⎝−ξna − ξ

⎡

⎢⎣ξ2na +
⎛

⎝1 − κ −
( p

p−1
2

)

2p−1 Z
p−1
2

na

⎞

⎠
2
⎤

⎥⎦

⎞

⎟⎠ ∂T1ωi

=
(
−ξna − ξξ2na − ξ(1 − κ)2

)
∂T1ωi

− ξ

⎛

⎜⎝

( p
p−1
2

)2

22(p−1)
Z p−1
na − 2(1 − κ)

( p
p−1
2

)

2p−1 Z
p−1
2

na

⎞

⎟⎠ ∂T1ωi

(50)

Although there is no complete separation of vari-
ables, as Zna(T1), both sides of (49) are integrated
anyway

(
−ξna − ξξ2na − ξ(1 − κ)2

)
T1ωi

−ξωi

∫ T1

0

⎛

⎜⎝

( p
p−1
2

)2

22(p−1)
Z p−1
na − 2(1 − κ)

( p
p−1
2

)

2p−1 Z
p−1
2

na

⎞

⎟⎠ ∂T1

= IZ (Zna) + C (51)

with C the constant of integration and

IZ (Zna) =
p
( p
p−1
2

)2

(p − 1)22(p−1)
Z p−1
na

−
( p
p−1
2

)
(1 − κ)(p + 1)

p−1
2 2p−1

Z
p−1
2

na

+
(
(1 − κ)2 + ξ2na

)
ln(Zna)

(52)

The slow time T1 between the two states Zna,1 and
Zna,2 on the SIM is
(
−ξna − ξξ2na − ξ(1 − κ)2

)
T1ωi

−ξωi

∫ T1

0

⎛

⎜⎝

( p
p−1
2

)2

22(p−1)
Z p−1
na − 2(1 − κ)

( p
p−1
2

)

2p−1 Z
p−1
2

na

⎞

⎟⎠ ∂T1

= IZ (Zna,1) − IZ (Zna,1) (53)

To be able to solve the integral on the left-side
equation, either the function Zna(t) has to be derived
from the slow flow dynamics, or a constant Zna is
assumed. Here it is opted for the latter. This constant
Zna is only assumed to solve the unsolvable integral,
not for the whole equation. During TET, the energy
Zna in slow flow looks almost constant, see Fig. 11 for
simulations of an undamped main system, where the
dashed lined seem almost constant during TET. See
Fig. 22 which shows Zna for p = 3 of this simulation.
Only a small error would be introduced by assuming
Zna(t) = Zna,c, with Zna,c a constant. Finally, the time
between the two energy states, now chosen as Zna(0)
and Z+

na , is:

(
− ξna − ξξ2na − ξ(1 − κ)2 + ξ

⎛

⎜⎝

( p
p−1
2

)2

22(p−1)
Z p−1
na,c

−2(1 − κ)

( p
p−1
2

)

2p−1 Z
p−1
2

na,c

⎞

⎠
)
Tpump2π

= IZ (Zna,1) − IZ (Zna,2)

(54)

from which the pumping time Tpump follows. Here, a
Zna,c is estimated through the undamped simulations,
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Table 7 Numerical values for SDOF system, Fig. 8. Other
numeric values are found on Table 1

Parameter Value

c [ Ns
m ] 0.01

Zna,c [−] 1.63

Tpump
ωi
2π [s] 63.9

Tpump,c=0.01
ωi
2π [s] 50.0

Time [s]0
0

0.05

50

Z   (0)na

Zna,+

Fig. 22 Undamped slowflow simulation for p=3 taken fromFig.
11, illustrating the slow change of Zna from its initial value

e.g., Fig. 22, as the average function value of Zna during
TET:

Zna,c = 1

Tpump

∫ Tpump

0
Zna(t)dt (55)

8.1.1 SDOF example

To show the viability of the proposedmethod, the simu-
lations performed earlier on an SDOF system for p = 3
and κ = 0, in Sect. 6, are repeated with added damping
of c = 0.01 Nm

s . The nonlinear coefficient of the NES
is not altered as modal damping does not affect tuning.
The pumping time for both damped and undamped are
found in Table 7. Zna,c was determined as the aver-
age function value of Figure 22. The predicted value
of Tpump in the damped case, 50 s, is in accordance to
both observed pumping time, in the slow flow simula-
tion and the actual, fast, dynamics, Fig. 23.

8.1.2 MDOF example

The cascading time was determined by assuming that
the initial energy of modes lower than tuned mode i , is
kept inside the main system, until this mode engages in
RCC. With the addition of modal damping, the energy
of themodes not active in theRCCwill not be preserved
but dissipated by this modal damping. The dynamics
for a mode k not active in RCC can be seen as only

Time[s]
0

0.005

0.01

E0

0 20 40 60 80 100 120
0

0.1

Ena

Fig. 23 TET in a damped system (red) and undamped (black).
(Color figure online)

changing in Z0,k while Zna,k = 0. Solving (21) for
Zna,k = 0:

Z0,k(T1) = Z0,k(0)e
−λT1 (56)

with Z0,k(0) determined by the modal decomposition
of the initial conditions. If the cascade was initiated at
mode i , then when it is the turn of mode k to start in
the cascade, the energy in mode k will be reduced to
Z0,k(T1,start,k) by (56) for a time:

T1,start,k = εk

i−k−1∑

l=0

Tpump,i−l · ωi−l

2π
(57)

being the sum of the pumping times of the previous
modes who were in the RCC, with εk = 1

mnaek(�)2
dif-

ferent for eachmode. It is the Z0,k(T1,start,k) that is used
to calculate the initial Zna,k required to calculate the
pumping time for mode k. A simulation is performed
on the system presented in Sect. 7 for p = 3 and κ = 0.
The cascading time for the damped system is almost
halved compared to the undamped case, Table 8. Note
that to determine the constant Zna,c for calculating the
pumping of each mode, single-mode simulation of the
slow flow need to be performed first, by applying the
modal decomposition of the initial conditions. Damp-
ing has the most effect on the first mode, as this mode
stays the longest in the system. The numerical simula-
tion of the undamped system are shown in Fig. 15. The
damped case is shown in Fig. 24 and reveal the energy
is mitigated a lot faster and that the cascading time of
the damped system is estimated well.
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Table 8 Pumping time for
each mode and the cascade
time damped vs undamped

Tpump,3
ω3
2π Tpump,2

ω2
2π Tpump,1

ω1
2π Tcascade

p = 3 κ = 0 c = 0 21.8 140 1066 1227

p = 3 κ = 0 c = 0.01 16.3 112 609 738
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Fig. 24 The actual numerical simulation of compound system
Fig. 13, with (a) the wavelet transform of the relative NES vibra-
tion v, (b) the displacement of the relative NES vibration and (c)
the vibrations of the attachment point x2 for p = 3, κ = 0 and
c = 0.01

8.2 Additional nonlinearity in main system

The same procedure to calculate the SIM and slow flow
dynamics can be applied to a main system which has
an additional nonlinearity somewhere. It is assumed
that the nonlinearity is an nonlinear stiffness of uneven
power pm , and the main system is linearizable so that it
has linear eigenfrequencies. Assuming that the system
still vibrates according to a single mode, a mode of the
linearized main system, an added nonlinearity will be
found in (9) as:

ẍ� + ελẋ� + ω2
i x� + βpm x

pm
� + εẍna = 0

εẍna + ελna(ẋna − ẋ�) + εαp(xna − x�)
p

+ εκω2
i (xna − x�) = 0

(58)

Depending on the order of the coefficient βpm , O(ε1)

or O(ε0), it will appear differently in the slow flow
dynamics. Note that no discussion will be held for
purely nonlinear main systems, the nonlinearity here is
seen as a deviation of the linearized system. In introduc-

tion to vibration absorbers for purely nonlinear main
systems is found in [19].

8.2.1 βpm of O(ε1)

After some calculation the nonlinearity will appear in
the second equation of (17) proportional to ϕ0 with
B = βpm

ω
pm+1
i

∂ϕ0

∂T1
+ ∂ϕ1

∂T0
+ λϕ0

2
+ ω2

i ϕna0

2iωi
− ω2

i ϕ0

2iωi
−

i
Bωi

(2)pm

(
pm
pm−1
2

)
|ϕ0|pm−1ϕ0 = 0

(59)

It will then appear only in the second equation of
(19), in the phasing of the slow flow dynamics:

R0

ωi

∂δ0

∂T1
= − R0

2
+ cos(δna − δ0)

2
Rna

− B

2ωi

(
pm
pm−1
2

)
Rp
0 (60)

The nonlinearity will influence the phase of the slow
flowdynamics. In further derivations, this second equa-
tion of (19) is not used in following derivations, an
identical expression for the SIM and slow flow dynam-
ics (21) is found for βpm of O(ε1). The tuning proce-
dure, pumping time and cascading time are therefore
not altered by the nonlinearity of O(ε1) in the main
system, and so is robust against these nonlinearities.
There only is a difference in phasing on slow time scale
T1. A simulation is performed as an illustration. The
SDOF system in Sect. 6 is taken for p = 3 and κ = 0,
but with an additional nonlinear stiffness from main
mass to ground, 0.5x3, with the coefficient of O(ε1)

(ε = 0.02). The NES vibration, Fig 25b, and main
mass vibration, Fig 25a, both in red dash, are almost
identical as if no nonlinearity is present (in black). The
effect on phasing on the slow time is not seen.

8.2.2 βpm of O(ε0)

The nonlinearity of order O(ε0) will appear in (17) in
the first two equations:
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Fig. 25 Numerical simulation of system Fig. 8 for ẋ(0) =
0.1, p = 3 and ξna = 0.1.Main systemvibration (a) andNES (b)
for linear main system (black), with additional nonlinear spring
0.5x3 (red) and 10x3 (blue). (Color figure online)

∂ϕ0

∂T0
= i

B

(2)pm

(
pm
pm−1
2

)
|ϕ0|pm−1ϕ0

∂ϕ0

∂T1
+ ∂ϕ1

∂T0
+ λϕ0

2

+ ω2
i ϕna0

2iωi
− ω2

i ϕ0

2iωi

− i · Bωi

(2)p
f (ϕna0, ϕ̄na0, ϕ0, ϕ̄0, ϕ1, ϕ̄1) = 0

(61)

which hints in the first equation that this nonlinearity
has influence on a fast time scale. However, rewriting
the complex variable ϕ0 in polar notation for time scale
T0, ϕ0 = R0(T0)eiδ0(T0), and splitting in real and imag-
inary part yields:

∂R0(T0)

∂T0
= 0

R0(T0)

ωi

∂δ0(T0)

∂T0
= − βp

2ωi

(
p

p−1
2

)
Rp
0 (62)

which reveals that just like for O(ε1), the amplitude is
not effected, but only the phase. This time in the fast
time scale instead of the slow.

In the second equation in (61), the nonlinearity will
cause a coupling between ϕ0 and ϕna0, lumped in
f (·) ∈ R. This term ismultiplied by the imaginary unit,
i , which will cause it to appear in the phase dynamics
of the slow flow, the second equation of (19). This way
again only the slow phase dynamics are altered and not
the amplitude.As in previous section, this does not alter
the slow flow dynamics and SIM, (21). The derivations
of tuning and performance measures are thus robust
against additional nonlinearities in the main system of
O(ε1) andO(ε0). To illustrate this forO(ε0), the same
system is taken as before, but nowwith the nonlinearity
10x3, with the coefficient ofO(ε0). TheNES vibration,
Fig 25b, andmainmass vibration, Fig 25a, both in blue,
are of the same magnitude but shift in phase over time
compared to the linearmain system (in black). The only
effect of the nonlinearity is on the phase on the fast time
scale, just as predicted.

9 Conclusion

In this study, the tuning and performance of a NES for
absorbing excessive vibration with TET in a mechan-
ical system was thoroughly investigated, both single-
mode and multi-modal vibrations. A more application-
oriented approach was taken than typically done in
existing literature. Central in this approach is the
derived slow invariant manifold, a static relation which
describes the energy exchange on a slow time scale.
First, tuning formulas for aNES for single-modal vibra-
tions were established. The connecting stiffness of the
NES can have any uneven power and a small posi-
tive or negative linear part. Then, the algebraic perfor-
mance measures pumping time and energy dissipation
were defined, which required no numerical simulation
to be determined. This way, the influence of different
powers and linear part of the NES’s connecting stiff-
ness on TET performance can be quickly assessed. For
the single-mode case, increasing the power and neg-
ative linear part impeded TET while a positive linear
part expedited TET. Numerical simulations, although
not required to asses the TET performance, confirmed
the merit of both the pumping time and dissipated
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energy. Next, tuning rules were established for multi-
modal frequency absorption capability (RCC) of a sin-
gle NES. These rules are based on the single-mode
case by decomposing of initial conditions on the main
system into single modes. Similar to the single-modal
case, a novel algebraic performance measure for the
speed RCC was defined, the cascading time, the time
the NES takes to dissipate all the modes. Here, it was
concluded that higher power and negative linear part
actually expedited the RCC while a positive linear part
impedes the RCC, opposite to the single-modal case.
Numerical simulations again confirmed the validity of
this cascading time.
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