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Abstract

Torsional vibrations are of vital importance in rotating machinery, with demands of better performance and material

savings potentially inducing resonance conditions. A robust and effective vibration attenuation solution is offered by

the Nonlinear Energy Sink (NES). In this research, a 2-DOF torsional host structure is attached to an NES having

piecewise-linear stiffness. The design of the NES is optimized for minimal stresses in the local members while avoid-

ing local resonances. The coupled NES-host system is analyzed using Complexification-Averaging of the first-order

and validated by experimental and numerical means. While existing research is primarily focused on the resonant

response, a study of the possible bifurcations is also needed. In this regard, the experimental validation reveals typical

nonlinear behavior of quasi-periodic responses and isolated resonance curves, also with a significant attenuation at

resonance. As such, a complete toolchain is developed from analytical tuning, material strength optimization and

realization, that can be applied to a wide range of torsional vibration applications.

Keywords:

Nonlinear Energy Sink (NES), Torsional vibration, Complexification-Averaging, Design optimization, Piecewise

nonlinearity

1. Introduction

Attenuation of torsional vibration is of great importance in the field of turbomachinery and transmission design.

Industry trends of the current decade have led to a demand for increased fuel efficiency and performance, thereby

creating a demand for lightweight constructions; development of design optimization is a product of this demand.

However, this trend places the system’s dynamics close to their resonances. This is especially crucial for rotating

machinery as torsion-induced shear stress has a lower fatigue limit for failure compared to bending/tensile stress. A

selection of research in torsional vibration analysis and material fatigue is presented in [1, 2, 3, 4, 5]. Suitable care

needs to be taken during the design stage to mitigate these issues.
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A potential solution is to add vibration absorbers tuned to absorb the resonant vibrations of the primary/host sys-

tem. The earliest form of the Tuned Mass Damper (TMD) as passive auxiliary attachment was proposed by Frahms[6]

and further developed by Den Hartog[7], where the latter also proposed an optimal damping criterion. Additionally,

the field of vibration mitigation saw the rise of electromechanical actuation, thus founding active [8, 9, 10, 11]and

semi-active [12, 13, 14, 15, 16] vibration absorbers. Though, a well-designed control strategy promises excellent

vibration attenuation, the need for actuation is a disadvantage for such devices. Concerning torsional vibrations,

several TMD variations have been explored in the past, namely, the Dual-Mass Flywheel[17], the speed-dependent

absorbers[18, 19] and the damped pulley absorber[20]. A major disadvantage of a TMD is its narrow frequency band

of attenuation and the presence of side-resonances. While having great commercial success, it was identified that

introducing nonlinear elements to the absorber could greatly improve its robustness and range of operation.

The nonlinear vibration absorber, also referred to as Nonlinear Energy Sink (NES), offers several advantages

over its linear counterparts: (1) it can work effectively even when the system has undergone slight perturbations

to its parameters, and (2) the nonlinearity allows the device to attenuate multiple resonant frequencies of the host

system[21, 22, 23, 24]. The former property of ‘de-tuning’ supports its robustness and the latter supports its role

as a broadband absorber. The NES cannot completely attenuate the resonant response as done by a TMD, but it

avoids the side resonances. The NES has a variable natural frequency dependent on the magnitude of excitation, and

thus can self-tune to the frequency of the host system. For transient excitations, the NES initiates Targeted Energy

Transfer (TET), an irreversible pumping of energy to the NES, where the energy is then dissipated via damping[25,

26, 24, 27]. For harmonic excitations, at 1:1 resonance a quasi-periodic response similar to relaxation oscillations

occur [22, 21]. In general, for the nonlinear system, several potential responses can be obtained at a single exciting

frequency depending on the initial conditions. Such bifurcating responses need to be accurately characterised for

an effective implementation of the NES. First introduced by Vakakis[28], the NES technology has gained a lot of

popularity in the recent times. Examples of implementations of NES are also vast, with notable advancements in the

domain of seismic vibration mitigation[29, 30, 31, 32], aerospace technology[33, 34, 35], and mechanical engineering

[36, 37, 38]. An in-depth review of the NES technology is given in [39, 40].

A number of nonlinear stiffness and damping variations of the NES have been studied for their potential. In this

aspect, the cubic[41, 23, 42], the softening[43, 44, 45], the saturating[43, 46], the periodic[47, 48], the bistable[49, 50,

51, 52, 32, 53], and the tristable[54, 55, 56] stiffness characteristics are of interest. Additionally, a general framework

for analysis of non-smooth NES has also been explored by Lamarque et al.[57]. The type of nonlinearity chosen

affects the order of attenuation of resonances and its threshold energy for initiating TET. Similarly, nonlinear damping

has also seen a variety in its kind[58, 59, 50]. Concerning solution methods, analytical techniques such as Harmonic

Balancing (HB)[60] and Complexification-Averaging (CxA)[61, 24, 62] method has achieved great popularity in the

analysis of nonlinear systems, as they offer better insights compared to their numerical counterparts. There have been

several recent realizations of NESs as a means for torsional vibration attenuation. In this matter, an early research

has been presented by Haris et al.[63] wherein a cubic, a 5th order and a vibro-impact NES is explored for their
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effectiveness in attenuating torsional vibrations. An experimental-cum-numerical validation of the NES efficacy is

also presented by the same author[64]. Later, Cao et al. presents a piecewise-linear stiffness NES attached to an inerter

mechanism offering significant resonant vibration suppression with low NES mass[65]. Similar concepts of inducing

nonlinearity in the NES has been used by the same authors to attenuate both transient and harmonic loads[66, 67], and

also to design a multi-stable NES[68]. Furthermore, novel designs of inducing nonlinearity by means of permanent

magnets[69, 70] and via particle dampers[71] have also been studied; significant reductions in vibration amplitude and

suppression time is reported here. A recent research by Cao et al. also presents a piecewise-linear NES design capable

of multi-modal torsional attenuation[72]. The aforementioned research showcase design concepts but do not elaborate

on the structural strength aspects or expand on optimal configurations for their durability. Furthermore, analytical

techniques are not being used to fully explore the dynamical behaviour and to validate the design’s performance.

In this paper, a variation of the design from Cao et al.[67] is chosen, but with a focus on obtaining an analytical

solution for the forced response, tuning of the NES stiffness, and on the practical aspects of strength/durability of

the design which was missing from previous works. As such, a complete toolchain is presented that, from analytical

model to realization, can be easily adapted to other torsional systems. Firstly, a dynamic model of the experimental

setup is formulated, and an analytical solution is obtained using the CxA method. Further, the design of the NES

and formulation of its design optimization problem is discussed. An experimental validation is conducted, where

it is found that the experimental results match well with the analytical predictions. It is also important, apart from

showcasing the advantages of a tuned NES, to explore bifurcating responses which can be detrimental to its overall

performance.

2. Dynamic model description

The vibration response of a structure with a NES is described through the study of its dynamic model. The primary

system where the toolchain will be applied is a benchmark 2-DOF torsional vibration setup mounted vertically, and

the NES is attached to the I2 inertia, as shown in Fig 1. The methodology described however is applicable to n-DOF

systems as well.

2.1. Equations of motion

The vibration of a torsional n-DOF primary system with NES is described by the following Equations Of Motion

(EOM):

Iθ̈ + Cθ̇ +Kθ + δℓ(Inaθ̈na) = F cos(ωt)

Inaθ̈na + cna(θna − θℓ) + kna(θna − θℓ)3 = 0
(1)

Where θ ∈ Rn×1 is the angular displacement vector, I ∈ Rn×n is the rotational inertia matrix, C ∈ Rn×n the damping

matrix, K ∈ Rn×n the stiffness matrix, δℓ ∈ Rn×1 the NES connection vector, which is 1 at the connection DOF of the

NES and 0 elsewhere and F the force vector. The absorber parameters are the absorber angular displacement θna, the

3
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Figure 1: Simplified model of the coupled NES-host system. The inertias I1 and I2 form the host, and Ina is the NES inertia. The forcing input is

provided by motor as θin.

absorber damping cna and the absorber nonlinear stiffness kna. The following eigenvalue problem is obtained from the

undamped, unforced linear system:

(K − Iω2
i )ei = 0 (2)

where ω2
i is the ith eigenvalue and ei ∈ Rn×1 is the ith eigenvector. In the modal coordinates θ = Eq, with E =

[e1, e2, . . . , en], the EOM are:

Iq,iq̈i + cq,iq̇i + kq,iqi + ei(ℓ)(Inaθ̈na)

= eT
i F cos(ωt) for i = [1, · · · , n]

Inaθ̈na + cna(θ̇na − θ̇ℓ) + kna(θna − θℓ)3 = 0

P (3)

The dynamics is considered around a dominant single mode i. Rewriting Eq. (3) with the coordinate where the NES

is attached to being modified as θℓ = qiei(ℓ), is then:

Iq,i

ei(ℓ)2 θ̈ℓ +
cq,i

ei(ℓ)2 θ̇ℓ +
kq,i

ei(ℓ)2 θℓ + (Inaθ̈na) =
Fm

ei(ℓ)
cos(ωt)

Inaθ̈na + cna(θ̇na − θ̇ℓ) + kna(θna − θℓ)3 = 0
(4)

Where Fm = eT
i F is the modal force. Defining θℓ = y, the relative absorber motion z = θna − y, dividing Eq. (4) by

Iq,i

ei(ℓ)2 :

ÿ + εξωiẏ + ω2
i y + ε(z̈ + ÿ) = εω2

i P cos(ωt)

ε(z̈ + ÿ) + εξnaωiż + εω2
i γz3 = 0

(5)
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where,

ε =
Inae2

i (ℓ)
Iq,i

ω2
i =

kq,i

Iq,i
ξ =

cq,i

Inaωi

ξna =
cna

Inaωi
γ =

kna

Inaω
2
i

P =
Fm

Inaω
2
i ei(ℓ)

(6)

Finally, the time and motion are made dimensionless by the following substitution:

τ = ωit ȳ =
√
γy z̄ =

√
γz

Following which Eq. (5) becomes,

ȳ′′ + εξȳ′ + ȳ + ε
(
z̄′′ + ȳ′′

)
= εP̄ cos(Ωτ)

ε
(
z̄′′ + ȳ′′

)
+ εξnaz̄′ + εz̄3 = 0

(7)

where

( )′ =
∂ ( )
∂τ

Ω =
ω

ωi
P̄ =
√
γP (8)

2.2. Complexification-Averaging

Complexification-Averaging is performed to study the dynamics on the envelope of vibration, i.e. the slow flow

dynamics. The vibrations are assumed to have a single frequencyΩ. The following complex Manevitch variables [61]

A and B facilitate this:

2A(τ) exp ( jτ) = ȳ − j
ȳ′

Ω
2B(τ) exp ( jτ) = z̄ − j

z̄′

Ω
(9)

where A and B hold the amplitude and phase modulation. The original variables are then substituted by:

ȳ = A(τ) exp ( jΩτ) + A∗(τ) exp (9 jΩτ)

ȳ′ = jΩ
(
A(τ) exp ( jΩτ) − A∗(τ) exp (9 jΩτ)

)
ȳ′′ + Ωȳ = j2ΩA′ exp ( jΩτ)

z̄ = B(τ) exp ( jΩτ) + B∗(τ) exp (9 jΩτ)

z̄′ = jΩ
(
B(τ) exp ( jΩτ) − jB∗(τ) exp (9 jΩτ)

)
z̄′′ + Ωz̄ = j2ΩB′ exp ( jΩτ)

(10)

Where j is the imaginary variable and (∗) indicate the complex conjugate. Substituting Eq. (10) into Eq. (7) and

keeping only the terms with frequency Ω yields:

jΩA′ + jεξΩA +
(
1 −Ω2

)
A + ε

(
jΩB′ −Ω2B + j2ΩA′ −Ω2A

)
=
εP̄
2

j2ΩB′ + 2 jΩA′ −Ω2B −Ω2A + ξna jΩB + 3B|B|2 = 0
(11)

which is basically an averaging procedure over the forcing frequency Ω. In steady state (A′ = B′ = 0), Eq. (11) is

reduced to:

jξ
√

XA + σA − XB − XA =
P̄
2

− XB − XA + ξna j
√

XB + 3B|B|2 = 0
(12)
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with X = Ω2 and εσ = 1 − X. The stability of the steady state solutions is computed using the Jacobian in Appendix

A and B. Next, the equations can be manipulated to obtain two equations in Za = a2 and Zb = b2 with A = a
2 e jα and

A = b
2 e jβ. The first one is a SIM between Za and Zb:

X2Za = Zb

Xξ2
na +

(
X −

3
4

Zb

)2 (13)

and the second a SIM that relates Zb with P̄:[
(X − σ)(

3
4

Zb − X) + Xξnaξ + X2
]2

Zb + X
[
ξ(

3
4

Zb − X) + (σ − X)ξna

]2

Zb =
(
XP̄

)2
(14)

Per excitation level P̄, a frequency response can be computed by first solving Eq. (14) for Zb and computing the

corresponding Za from Eq. (13), over a range of X. The maxima and minima of the SIM are important in tuning the

absorber stiffness. These are obtained by deriving Eq. (13) w.r.t Zb and finding the roots:

Z+b =
8
9

X +
4
9

√
X2 − 3ξna (15a)

Z−b =
8
9

X −
4
9

√
X2 − 3ξna (15b)

Z+a = Z−b

Xξ2
na +

(
X −

3
4

Z−b

)2 /X2 (15c)

Z−a = Z+b

Xξ2
na +

(
X −

3
4

Z+b

)2 /X2 (15d)

The inflection points thus obtained are tuned for the optimal NES performance.

2.3. Insights from analytical calculations

In this section, the dynamical behaviour of the system is explained in relation to the SIM equations calculated

previously. Tracing the response envelopes for a harmonic excitation (Figs. 3a and 3b), both a and b increases along

the left branch until the maxima (
√

Z−b ,
√

Z+a ) is reached, and the response jumps to the branch on the right, inducing

the desired regime of Strongly Modulated Response (SMR) [21, 22, 73], where a faster rate of energy dissipation is

achieved. At the end of the SMR regime, the system jumps to the left branch and thereafter repeats this response as

a limit-cycle oscillation. The SIM of the frequency response from Eqs. (13) and (14) is shown for various forcing

levels (P̄) in Fig. 2. Around the resonant frequency we see a saturation in the response level as the forcing increases.

Additionally, the response is also considered to be unstable. This is indicative of the limit-cycle response as explained

by the SIM in Fig. 3a and by a corresponding time simulation of the full EOM (refer Eq. (5)) in Fig. 3b. This infers

that the response saturation in the frequency response is dictated by the maxima of the SIM, defined by Eq. (15c)

and is plotted as a thin dashed line in Fig. 2. As such, this serves as a design criterion for response suppression to

safe levels. However, if the primary system stays below the maxima, then the absorber will not activate. Thus, the

SIM limits should be designed also taking the forcing limits into account. At sub-resonant frequencies we observe

the inception of a bifurcating, Isolated Resonance Curve (IRC)[74] (or isola) as the forcing amplitude increases.

6
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Figure 2: Frequency Response of the NES-host system (stable ( ) and unstable ( )) compared to that of the host system ( ); SIM limits

are indicated by ( ). The figure shows the evolution of Isolated Resonance Curves with the increase in forcing. Additionally, the saturation of

the 1:1 resonant response is observed.

This detached curve enlarges at higher forcing until it merges into the main branch of the frequency response. This

anomaly, often undetected in experimental testing and numerical simulation, can be catastrophic as the response can

jump to the stable part of the IRC when excited by an additional input of excitation (initial conditions).

A crucial part of NES design is the choice of nonlinear parameters such that the input excitation level triggers

SMR. For a given setup, the excitation limits (i.e. limits of P) can be readily estimated and then is scaled with γ,

and thereby kna, to obtain P̄. This would in-turn provide values for Zb and Za for each exciting frequency, from Eqs.

(13) and (14), assuming a given cna. For the region with the SMR response, the choice of the parameter cna would be

to adjust the maxima (Eqs. (15b) and (15c)). Thus, to ensure an optimal SMR response at resonance, both cna and

kna need to be tuned to overcome the SIM threshold (maxima) for a given P, while the separation of the SIM limits

need to be controlled by cna. The host system is identified to have properties as in Tab. 1, and for the NES, a value

of kna = 110 N rad-3 and cna = 0.0085 N rad-1s-1 is chosen after some trial calculations. This will allow the NES

to exhibit its typical behavior of SMR, saturation and isola within the force range the benchmark system is able to

provide.

I1[m4] I2[m4] k1[N rad-1] k2 [N rad-1] c1 [N rad-1s-1] c2 [N rad-1s-1]

37e-04 125e-04 33.35 17.11 0.0431 0.0085

Table 1: Identified host system parameters
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(a) (b)

Figure 3: The SIM (black, stable ( ) and unstable ( )) with its extrema (�) and an overlay of the actual response envelope (red) obtained

from simulations (a), and the corresponding time simulation with the estimated envelope (red) (b)

3. Design Methodology

A brief description of the means of inducing nonlinearity in the NES for a practical design is presented, followed

by the formulation of an appropriate design optimization problem.

3.1. Conceptual design and piecewise approximation of nonlinearity

The fundamental basis for the NES design is to approximate nonlinear stiffness profiles via a combination of

piecewise-linear segments [67]. In this regard, the preliminary design is presented in Fig. 4a. The piecewise-linear

torsional stiffness is created by the engagement of flexural rods (axially placed) at different angles on the slotted disc;

the slots and rod dimensions are chosen in accordance with the nonlinear profile to be approximated. Furthermore, a

number of rods can engage at the same angle, as seen in the figure. Consider a rod made of a material having elastic

modulus E, density ρ, where each rod h has a diameter dh and length L. Each of them engages with its corresponding

slot at a radial distance of Rh at intervals θh, and undergoes a small angular deflection of δθh. Additionally, θmax is the

maximum displacement allowed in the design. Then the restoring torque Th obtained from a single rod is as follows:

Th =
3E
L3

πdh
4

64
R2

h︸       ︷︷       ︸
kθ,h

(θ − θh)︸  ︷︷  ︸
δθh

=
3EIh

L3 R2
h(θ − θh)

(16)
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(a)

Angular Slots

Flexural Rods

Slotted Disc

Top View

Ø

(b)

Figure 4: Concept of a piecewise-stiffening NES (a) and comparison (b) of cubic nonlinearity (red, ( )) and its piecewise-linear approximation

(black, ( )); Note θ̄ = θ
θmax

and T (−θ̄) = −T (θ̄)

Where Ih is the moment of inertia. The piecewise-linear stiffness function from multiple rod engagements can be

written as follows:

kθ (θ) =



kθ,1 (|θ| ≤ θ1)

kθ,1 + kθ,2 (θ1 < |θ| ≤ θ2)

kθ,1 + kθ,2 + kθ,3 (θ2 < |θ| ≤ θ3)

kθ,1 + kθ,2 + kθ,3 + kθ,4 (θ3 < |θ| ≤ θmax)

(17)

Additionally, the stiffness of each rod kθ,h is defined according to the nonlinear stiffness function Fna(θ) = knaθ
3

as shown in Eq. (18) below. A comparison of the cubic nonlinear stiffness and the approximated piecewise-linear

stiffness is shown in Fig. 4b. Note that the stiffness function is symmetric about the origin.

kθ,h =
knaθh

3 − kθ,h−1θh

θh − θh−1

1 ≤ h ≤ 4; θ0 = 0, kθ,0 = 0 , θ4 = θmax

(18)

3.2. Material stress and local resonance

A major drawback of a cubic nonlinearity is its need to sustain large displacements (above the threshold limit) to

attain the SMR regime. This induces high stresses, making it prone to yielding or vibration-induced fatigue failure.

Furthermore, the design should also ensure that local resonances of the rods are avoided, as the stiffness Eq. (16)

assumes static deflection of the rods. Each rod in the NES is subjected to two main forces; a tangential force Ft,

which is a point load due to the torque induced by angular deflection of the tip, and a centrifugal force Fc caused

by the angular speed of the rod w.r.t the rotating axis, acting as a uniformly distributed load along its length. The
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forces are visualized in Fig. 5. In this setup, the host system’s motor is capable of oscillating motion, with maximum

Figure 5: Forces acting on a flexural rod; a tangential point-load Ft from the torque due to deflection, and a centrifugal uniformly distributed load

Fc from the rotation of the NES.

possible magnitude θ2,max observed at I2 (refer to Fig. 1) and has a maximum rotational frequency ωmax. For systems

that fully rotate, the latter term is equal to the rotational speed. Thus, the centrifugal force Fc and tangential force Ft

can be defined as in Eq. (19) below.

Fc = ρ
πdh

2

4
L︸   ︷︷   ︸

mh

Rh
(
θ2,max ωmax

)2

Ft =
3E πdh

4

L3 64
Rh

(
θ2,max − θh

) (19)

Here, Fc is calculated for a given rod of mass mh at its highest possible magnitude of angular velocity θ2,max ωmax, and

Ft is defined as Th
Rh

. The bending moment and thus, the bending stress would be maximum at A (refer to Fig. 5) and is

given by Eq. (20).

σmax,A =

32
(√

(FtL)2 +
(

FcL
2

)2
)

πd3
h

(20)

A sufficiently accurate estimation of the first eigenfrequency could be obtained from the Rayleigh Quotient method.

This assumes that the rods behave as a static elastic element. For this to hold, it should be avoided that the rods

themselves are excited near their natural frequency. The response is defined in Eq. (21) and the assumed spatial

eigenfunction ψn(x) is then taken according to mode n under consideration, as in Eq. (22).

y(x, t) = ψn(x)ϕn(t) = ψn(x) sin(ωnt + α) (21)

Since the first eigenfrequency is being considered we have,

ψ1 (u) =
1
2

(
3u2 − u3

)
, u =

x
L

; 0 ≤ u ≤ 1 (22)

Here ψ1 (u) is approximated as the deflection shape for a static deflection of the rod. The Rayleigh Quotient (R)

is found taking into account the conservation of energy in the system, i.e. maximum kinetic energy is equal to the
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maximum potential energy.

R (ψ1(u)) = ω2
1 =

∫ 1
0 EI

(
ψ̈1

)2
(u) du∫ 1

0 ρA ψ1
2 (u) du

=
35
44

d2
hE
ρL4 (23)

Where ¨( ) = d2( )
du2 , and f1 = ω1

2π is the natural frequency of a flexural rod.

4. Design optimization

A general design optimization procedure is developed with the principle idea of minimizing the bending stress in

the rods and avoiding local resonances, while keeping the stiffness profile the same as the desired one. The design

variables are the diameters of the rods and their length, and therefore Eqs. (16), (20) and (23) are parametrized with

these variables. However, based on the host system’s requirements and limitations, certain constraints on the absorber

dimensions are also placed. With these under consideration, we can formulate an optimization problem as follows:

minimize σmax,A,h(dh, L)

subject to f1,h(dh, L) ≥ 1.25 fmax

dh,min ≤ dh ≤ dh,max

Lmin ≤ L ≤ Lmax

Rh,min ≤ Rh ≤ Rh,max

(24)

Here, the objective function to minimize is the maximum stress of each rod (see Eq. (20)). The constraint functions

involve keeping the natural frequency 25% above the maximum rotational frequency, and some dimensional restric-

tions. A visualization of the design space from the above constraints is shown in Fig. 6b. Here, the objective function

is represented as a function of the constraint variables, L and Rh; corresponding to the rods of the kθ,h stiffness incre-

ment. The black dashed lines show the constraints on L and Rh, and the red dashed lines indicate the eigenfrequency

constraint. Lines of constant diameter dh are also plotted, and can be used to indicate its corresponding constraint

function. Before performing a numerical optimization, it is recommended to have an understanding of the effect of

the design variables upon the objective function. The relative importance of each constraint function can be assessed

by their corresponding reduction of the design space, and necessary modifications can be made to their limits.

Apart from design constraints, some design constants have also been considered as in Tab. 2. Each stiffness

increment kθ,h can be split equally by having identical rods engage at the same angle θh. The number of engagements

(i.e. rods) per stiffness increment can be increased to further lower local stresses and this can be used to avoid

infeasible designs. From the linear stiffness calculations in Eq. (18), kθ,1 ≈ 0, thus negating the need for an initial

engagement of a rod. Spring steel is chosen as the material for the rod as it possesses a high yield and endurance limit.

The maximum rotation of θ2,max is limited by the motor of the setup. Note that the limits on dh are from manufacturing

concerns, while for L and Rh, they are from the dimensional constraints of the machine. The numerical optimization

is performed in MATLAB using the fmincon function and the default algorithm of interior-point has been used. The

11

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5101506

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



Design Constants Design Constants Design Constraints

Parameter Value Parameter Value Parameter Limits

E [N/m] 2.06e11 ρ [Kg/m3] 8050 dh [mm] ϵ [3, 12]

θ2,max[rad] 0.1 ∆θh [rad] 0.025 L [mm] ϵ [50, 250]

rods per kθ,h 3 fmax[Hz] 30 Rh [mm] ϵ [29, 100]

kθ,1 0

Table 2: Design constants and constraints of the optimization

Rod Index (h) dh [mm] L [mm] Rh [mm] σmax,h[MPa] f1,h [Hz]

1 - - - - -

2 3.2 248 29.6 36.64 37.36

3 3.4 ” 30.8 27.06 36.39

4 3.8 ” 31.5 16.15 44.36

Table 3: Optimized design variables and the resulting objective function values

optimization is computationally inexpensive and takes ∼ 1 second to complete. The results of the optimization are

presented in Tab. 3. It should be noted that since the manufacturing tolerance is about 0.1 mm, the results have been

rounded accordingly. The optimal design obtained has significantly lower rod stress than the material endurance limit

(∼ 500 MPa), thus theoretically guaranteeing infinite life for the design. The optimized design thus obtained has been

further designed in detail for implementation, as seen in Figs. 6a and 6c.

5. Analytical results and Experimental validation

In this section, the harmonic response prediction from CxA (Eqs. (13) and (14)) is compared to experimental

results to explore the general agreement between the results obtained and also to validate the choice of the nonlinearity

and its parameter value. The parameter values from the NES and from the identification of the primary system is given

in Tab. 4. A sine sweep signal from 5.5 Hz to 8 Hz frequency and of amplitude 0.5, 0.6 or 0.75 rad is provided by

ε ξ γ ω1 [rad/s] ξna P

0.088 0.296 82.68 42.4 0.269 0.836

Table 4: Parameters of the NES and the identified primary system

the motor to I1 of the host system (refer to Fig. 6a). The angle measurements are acquired by belt-driven encoders
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(a)

Motor

Encoders

NES

(b)

(c)

Figure 6: NES assembled onto the 2-DOF benchmark system(a), Visualization of the constrained design space (hatched) with the objective

function indicated by the colorbar(b), and assembly of the optimized NES (c)

attached to each of the respective inertias. The measurement data is then filtered, and the envelope of oscillation is then

extracted. For visual clarity, the envelope of SIM maxima (
√

Z+a from Eq. (15c)) is used for regions of quasi-periodic

response. The analytical treatment and the experimental measurements are superimposed in Fig. 7. A clear agreement

can be seen between the experimental and analytical results, thus validating the CxA method and its assumptions. It

can be inferred that for all three excitation cases, there has been a significant reduction and saturation of the resonant

response, but with a major caveat; the presence and attachment of an Isolated Resonance Curve (IRC) at higher forcing

levels.

For the input excitation of θin = 0.5 rad (Fig. 7a), the resonant response (at Ω1 = 6.75 Hz) with the NES

saturates to around 82% from its undamped value. Complexification-Averaging predicts a region of linear instability

at resonance, however, this is due to the response being quasi-periodic in nature, with a modulating envelope as seen

in Fig. 3b. The saturation of the measured envelope, indicated by the upper SIM limit is also shown, and it is observed

to lie below upper SIM limit predicted by CxA. In a narrow frequency band from 6.1 Hz to 6.2 Hz an IRC is formed,

undetected by the experiment.
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At θin = 0.6 rad (see Fig. 7b), the resonant response is diminished as before (≈ 84% reduction), however, the

IRC expands to almost merging with the main resonance curve. The response after attachment of the IRC is observed

in Fig. 7c for θin = 0.75 rad with a large amplitude response predicted by the measurement. Still, this response

is lower than the resonant response of the primary system. Also, the saturated resonant response is able to achieve

≈ 87% vibration suppression. The rise and fall frequency and the response magnitude on the attached curve are also

predicted reasonably well by the CxA method. Minor deviations can be attributed to the lack of higher order terms in

the ansatz of the proposed CxA solution, as is recommended for high forcing amplitudes. This could also be due to

the deviation of the actual, piecewise-linear stiffness, from cubic nonlinear stiffness at high amplitudes. A comparison

of the host system’s measured response before and after attachment of the NES is shown in Fig. 7d, for a sweep

through the resonant frequency. Here, a clear reduction in the response is observed after the attachment, in addition to

the saturated quasi-periodic response behavior predicted by the SIM (refer to Fig. 3).

(a) (b)

(c)
(d)

Figure 7: Frequency response of the host system for various input excitations; θin = 0.5 rad (a) 0.6 rad (b) and 0.75 rad (c). The legends (A)

indicate the response envelope obtained from CxA with its stable and unstable fixed-points; the SIM limits of the SMR response around 1:1

resonance are also indicated. The experimental validation is indicated by legends (E). The measured time response of the host system (d) with

( ) and without NES ( ) for θin = 0.6 rad, showing the SMR response around resonance.
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6. Conclusions

The design and analysis of a piecewise-linear stiffness Nonlinear Energy Sink (NES) for attenuating resonant

vibrations in a torsional setup has been successfully explored. The design methodology explained is a complete

toolchain that assists the NES implementation by proposing a theoretical framework to obtain an optimal nonlinearity,

and then relating it to aspects of structural integrity and practical dimensional restrictions that can applied to a wide

range of systems. An intuitive perspective of the following design optimization is also provided to further understand

design parameter influences. The analysis has been implemented with the Complexification-Averaging (CxA) method

and validated via experiments, showing a good agreement between them. This supports the use of CxA, even in

its first-order, as a suitable method for analyzing systems with strong nonlinearity. Additionally, the CxA method

could also detect the presence of an Isolated Resonance Curve (IRC) in the frequency response, undetected by the

experimental tests. This added benefit helps to better design by avoiding potential catastrophic responses. At high

forcing amplitudes, the IRC attaches to the main resonance curve and this has also been identified by both experiment

and CxA response envelopes.

The implemented NES prototype offers a significant attenuation of the resonant response (80% - 87%) for a broad

range of input excitation, but its performance is limited at high forcing by the presence and enlargement of an IRC at a

sub-resonant frequency band. However, even in this case, the response amplitude is lesser than that of the unattenuated

primary system resonance. To avoid IRCs then necessitates a careful design methodology wherein design parameter

influences on the inception of the IRC curve are also taken into account. Another scope of further research would

be to investigate multi-modal resonance attenuation capability of the NES, and also its potential for absorbing shock

loads. Nonetheless, the NES design toolchain can be easily adapted to changing requirements and supports a direct

implementation on a torsional host system.

Appendix A. Stability of slow flow dynamics

The stability of the asymptotic solution of Eq. (11) is computed from the linear stability around equilibrium of A

and B:

2 j
√

X



∆̇A

∆̇∗A

∆̇B

∆̇∗B


=



a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

︸                         ︷︷                         ︸
Σ



∆A

∆∗A

∆B

∆∗B


(A.1)
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Where ∆A = A − Aeq, ∆B = B − Beq. The equilibrium values are found from steady-state Eqs. (11). The matrix

elements are described below:
a12 = a21 = a32 = a41

a11 = −a∗22 = −εσ − jεξ
√

X

a13 = −a∗24 = jεξna
√

X + 6εBB∗|B=Beq

a14 = −a∗23 = 3εB2
∣∣∣
B=Beq

a31 = −a∗42 = εσ + jεξ
√

X + X

a33 = −a∗44 = X −
1 + ε
ε

a13

a34 = −a∗43 = −
1 + ε
ε

a14

(A.2)

The stability is then determined from the eigenvalues of Σ

2 j
√

X
.

Appendix B. Stability of SIM

The stability of the solutions on the SIM are computed with the 2nd equation (11). Linearizing this equation

around equilibrium Beq =
b
2 e jβ obtained from the solutions of Eq. (13) gives the following set of equations: ∆̇B

∆̇∗B

 =
 a11 a12

a21 a22

︸          ︷︷          ︸
Σ

 ∆B

∆∗B

 (B.1)

where ∆B = B − Beq and

a11 = a∗22 = −
j
2
−
ξna

2
+

j
2

6εBB∗|B=Beq

a12 = a∗21 =
j
2

3εB2
∣∣∣
B=Beq

(B.2)

Finally, the stability is determined by computing the eigenvalues of Σ matrix in equation (B.1). If any eigenvalue

has a positive real part, the solution is unstable.

References

[1] C. S. Keeney, S. Shih, Prediction and control of heavy duty powertrain torsional vibration, SAE transactions (1992). doi:10.4271/922481.

[2] L. S. Dorfman, M. Trubelja, Torsional monitoring of turbine-generators for incipient failure detection, in: Proceedings of the 6th EPRI Steam

Turbine/Generator Workshop, Citeseer, 1999, pp. 1–6.

[3] M. A. Corbo, C. P. Cook, Torsional vibration analysis of synchronous motor-driven turbomachinery, in: Proceedings of the 29th Turboma-

chinery Symposium, 2000, pp. 161–176. doi:10.21423/R1H37M.

[4] L. Beneduce, G. Caruso, D. Iannuzzi, F. Maceri, E. Pagano, L. Piegari, Analysis of a structural failure mode arising in cage rotors of induction

machines, Electrical Engineering 93 (2011) 179–191. doi:10.1007/s00202-011-0204-8.

[5] S. Luo, S. Wu, Fatigue failure analysis of rotor compressor blades concerning the effect of rotating stall and surge, Engineering Failure

Analysis 68 (2016) 1–9. doi:10.1016/j.engfailanal.2016.05.021.

16

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5101506

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

https://doi.org/10.4271/922481
https://doi.org/10.21423/R1H37M
https://doi.org/10.1007/s00202-011-0204-8
https://doi.org/10.1016/j.engfailanal.2016.05.021


[6] H. Frahm, Device for damping vibrations of bodies, 989958, United States (1911).

[7] J. P. Den Hartog, Mechanical vibrations, Courier Corporation, 1985.

[8] N. Olgac, B. Holm-Hansen, Tunable Active Vibration Absorber: The Delayed Resonator, Journal of Dynamic Systems, Measurement, and

Control 117 (4) (1995) 513–519. doi:10.1115/1.2801108.

[9] S. M. R. Rasid, T. Mizuno, Y. Ishino, M. Takasaki, M. Hara, D. Yamaguchi, Design and control of active vibration isolation system with an

active dynamic vibration absorber operating as accelerometer, Journal of Sound and Vibration 438 (2019) 175–190. doi:10.1016/j.jsv.

2018.09.037.

[10] X. Wang, B. Yang, Transient vibration control using nonlinear convergence active vibration absorber for impulse excitation, Mechanical

Systems and Signal Processing 117 (2019) 425–436. doi:10.1016/j.ymssp.2018.07.038.

[11] K. Kraus, Z. Šika, P. Beneš, J. Krivošej, T. Vyhlídal, Mechatronic robot arm with active vibration absorbers, Journal of Vibration and Control

26 (13-14) (2020) 1145–1156. doi:10.1177/1077546320918488.

[12] J.-H. Koo, M. Ahmadian, M. Setareh, T. Murray, In Search of Suitable Control Methods for Semi-Active Tuned Vibration Absorbers, Journal

of Vibration and Control 10 (2) (2004) 163–174. doi:10.1177/1077546304032020.

[13] X. Liu, X. Feng, Y. Shi, Y. Wang, Z. Shuai, Development of a Semi-Active Electromagnetic Vibration Absorber and Its Experimental Study,

Journal of Vibration and Acoustics 135 (051015) (Jun. 2013). doi:10.1115/1.4023952.

[14] F. Weber, Semi-active vibration absorber based on real-time controlled MR damper, Mechanical Systems and Signal Processing 46 (2) (2014)

272–288. doi:10.1016/j.ymssp.2014.01.017.

[15] F. Weber, Optimal semi-active vibration absorber for harmonic excitation based on controlled semi-active damper, Smart Materials and

Structures 23 (9) (2014) 095033. doi:10.1088/0964-1726/23/9/095033.

[16] P. Gao, C. Xiang, H. Liu, P. Walker, N. Zhang, Design of the frequency tuning scheme for a semi-active vibration absorber, Mechanism and

Machine Theory 140 (2019) 641–653. doi:10.1016/j.mechmachtheory.2019.06.025.

[17] A. Schmidt, Dual-mass flywheel, 7082855, United States (2006).

[18] F. T. Wu, C. C. Cheng, Design and analysis of a speed-dependent torsional vibration absorber, Proceedings of the Institution of Mechanical

Engineers, Part D: Journal of Automobile Engineering 220 (6) (2006) 763–774. doi:10.1243/09544070JAUTO57.

[19] M. Zink, M. Hausner, The centrifugal pendulum-type absorber-application, ATZ worldwide 111 (2009) 42–47. doi:10.1007/BF03225088.

[20] N. Ichikawa, T. Suzuki, T. Atsumi, Crank damper pulley structure for the internal combustion engine of a car, 4710152, United States (1987).

[21] Y. Starosvetsky, O. Gendelman, Strongly modulated response in forced 2dof oscillatory system with essential mass and potential asymmetry,

Physica D: Nonlinear Phenomena 237 (13) (2008) 1719–1733. doi:10.1016/j.physd.2008.01.019.

[22] O. Gendelman, Y. Starosvetsky, M. Feldman, Attractors of harmonically forced linear oscillator with attached nonlinear energy sink i:

description of response regimes, Nonlinear Dynamics 51 (2008) 31–46. doi:10.1007/s11071-006-9167-0.

[23] Dekemele, Kevin, Performance measures for nonlinear energy sinks in mitigating single and multi-mode vibrations : theory, simulation and

implementation, Ph.D. thesis, Ghent University (2021).

[24] A. F. Vakakis, O. V. Gendelman, L. A. Bergman, D. M. McFarland, G. Kerschen, Y. S. Lee, Nonlinear targeted energy transfer in mechanical

and structural systems, Vol. 156, Springer Science & Business Media, 2008. doi:10.1007/978-1-4020-9130-8.

[25] D. Quinn, R. Rand, J. Bridge, The Dynamics of Resonant Capture, in: A. K. Bajaj, S. W. Shaw (Eds.), Advances in Nonlinear Dynamics:

Methods and Applications, Springer Netherlands, Dordrecht, 1995, pp. 1–20. doi:10.1007/978-94-011-0367-1_1.

[26] G. Kerschen, Y. S. Lee, A. F. Vakakis, D. M. McFarland, L. A. Bergman, Irreversible Passive Energy Transfer in Coupled Oscillators with

Essential Nonlinearity, SIAM Journal on Applied Mathematics 66 (2) (2005) 648–679. doi:10.1137/040613706.

[27] D. Hong, T. L. Hill, S. A. Neild, Understanding targeted energy transfer from a symmetry breaking perspective, Proceedings of the Royal

Society A: Mathematical, Physical and Engineering Sciences 477 (2251) (2021) 20210045. doi:10.1098/rspa.2021.0045.

[28] A. F. Vakakis, Inducing passive nonlinear energy sinks in vibrating systems, Journal of Vibration and Acoustics 123 (3) (2001) 324–332.

doi:10.1115/1.1368883.

[29] F. Nucera, F. L. Iacono, D. M. McFarland, L. Bergman, A. Vakakis, Application of broadband nonlinear targeted energy transfers for seismic

17

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5101506

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

https://doi.org/10.1115/1.2801108
https://doi.org/10.1016/j.jsv.2018.09.037
https://doi.org/10.1016/j.jsv.2018.09.037
https://doi.org/10.1016/j.ymssp.2018.07.038
https://doi.org/10.1177/1077546320918488
https://doi.org/10.1177/1077546304032020
https://doi.org/10.1115/1.4023952
https://doi.org/10.1016/j.ymssp.2014.01.017
https://doi.org/10.1088/0964-1726/23/9/095033
https://doi.org/10.1016/j.mechmachtheory.2019.06.025
https://doi.org/10.1243/09544070JAUTO57
https://doi.org/10.1007/BF03225088
https://doi.org/10.1016/j.physd.2008.01.019
https://doi.org/10.1007/s11071-006-9167-0
https://doi.org/10.1007/978-1-4020-9130-8
https://doi.org/10.1007/978-94-011-0367-1_1
https://doi.org/10.1137/040613706
https://doi.org/10.1098/rspa.2021.0045
https://doi.org/10.1115/1.1368883


mitigation of a shear frame: Experimental results, Journal of sound and vibration 313 (1-2) (2008) 57–76. doi:10.1016/j.jsv.2010.01.

020.

[30] N. E. Wierschem, J. Luo, M. Al-Shudeifat, S. Hubbard, R. Ott, L. A. Fahnestock, D. D. Quinn, D. M. McFarland, B. Spencer Jr, A. Vakakis,

et al., Experimental testing and numerical simulation of a six-story structure incorporating two-degree-of-freedom nonlinear energy sink,

Journal of Structural Engineering 140 (6) (2014) 04014027. doi:10.1061/(ASCE)ST.1943-541X.00009.

[31] A. S. Saeed, M. A. AL-Shudeifat, W. J. Cantwell, A. F. Vakakis, Two-dimensional nonlinear energy sink for effective passive seismic

mitigation, Communications in Nonlinear Science and Numerical Simulation 99 (2021) 105787. doi:10.1016/j.cnsns.2021.105787.

[32] J. Fu, S. Wan, P. Zhou, J. Shen, M. Loccufier, K. Dekemele, Effect of magnetic-spring bi-stable nonlinear energy sink on vibration and

damage reduction of concrete double-column piers: Experimental and numerical analysis, Engineering Structures 303 (2024) 117517. doi:

10.1016/j.engstruct.2024.117517.

[33] B. Bergeot, S. Bellizzi, B. Cochelin, Passive suppression of helicopter ground resonance using nonlinear energy sinks attached on the heli-

copter blades, Journal of Sound and Vibration 392 (2017) 41–55. doi:10.1016/j.jsv.2016.12.039.

[34] K. Yang, Y.-W. Zhang, H. Ding, T.-Z. Yang, Y. Li, L.-Q. Chen, Nonlinear Energy Sink for Whole-Spacecraft Vibration Reduction, Journal of

Vibration and Acoustics 139 (021011) (Feb. 2017). doi:10.1115/1.4035377.

[35] I. P. Wall, M. R. Amoozgar, A. A. Popov, Aeroelasticity of an aircraft wing with nonlinear energy sink, Aerospace Science and Technology

155 (2024) 109684. doi:10.1016/j.ast.2024.109684.

[36] A. Nankali, H. Surampalli, Y. S. Lee, T. Kalma´r-Nagy, Suppression of Machine Tool Chatter Using Nonlinear Energy Sink, in: ASME 2011

International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of

Mechanical Engineers Digital Collection, 2012, pp. 1215–1223. doi:10.1115/DETC2011-48502.

[37] B. Peng, X. Yan, J. Du, Suppress the vibration of tool system in milling process, AIP Advances 12 (5) (2022) 055018. doi:10.1063/5.

0091935.

[38] A. E. Mamaghani, S. E. Khadem, S. Bab, Vibration control of a pipe conveying fluid under external periodic excitation using a nonlinear

energy sink, Nonlinear Dynamics 86 (3) (2016) 1761–1795. doi:10.1007/s11071-016-2992-x.

[39] Z. Lu, Z. Wang, Y. Zhou, X. Lu, Nonlinear dissipative devices in structural vibration control: A review, Journal of Sound and Vibration 423

(2018) 18–49. doi:10.1016/j.jsv.2018.02.052.

[40] H. Ding, L. Q. Chen, Designs, analysis, and applications of nonlinear energy sinks, Nonlinear Dynamics 100 (4) (2020) 3061–3107.

[41] G. Kerschen, J. J. Kowtko, D. M. McFarland, L. A. Bergman, A. F. Vakakis, Theoretical and experimental study of multimodal targeted

energy transfer in a system of coupled oscillators, Nonlinear Dynamics 47 (2007) 285–309. doi:10.1007/s11071-006-9073-5.

[42] D. Qiu, S. Seguy, M. Paredes, Tuned nonlinear energy sink with conical spring: design theory and sensitivity analysis, Journal of Mechanical

Design 140 (1) (2018) 011404. doi:10.1115/1.4038304.

[43] K. Dekemele, G. Habib, Inverted resonance capture cascade: modal interactions of a nonlinear energy sink with softening stiffness, Nonlinear

Dynamics 111 (11) (2023) 9839–9861. doi:10.1007/s11071-023-08423-9.

[44] S. Zhang, J. Zhou, H. Ding, K. Wang, D. Xu, Fractional nonlinear energy sinks, Applied Mathematics and Mechanics 44 (5) (2023) 711–726.

doi:10.1007/s10483-023-2984-9.

[45] S. Zhang, J. Zhou, H. Ding, K. Wang, Micro-vibration mitigation of a cantilever beam by one-third power nonlinear energy sinks, Aerospace

Science and Technology 153 (2024) 109409. doi:10.1016/j.ast.2024.109409.

[46] H. Venugopal, K. Dekemele, M. Loccufier, Vibration reduction in an unbalanced rotor system using nonlinear energy sinks with varying

stiffness, in: Proceedings of the 11th IFToMM International Conference on Rotordynamics, Springer International Publishing, Cham, 2024,

pp. 358–373. doi:10.1007/978-3-031-40455-9_30.

[47] K. Dekemele, G. Habib, M. Loccufier, The periodically extended stiffness nonlinear energy sink, Mechanical Systems and Signal Processing

169 (2022) 108706. doi:10.1016/j.ymssp.2021.108706.

[48] K. Dekemele, G. Habib, M. Loccufier, Vibration mitigation with a nonlinear energy sink having periodically extended stiffness, in: ISMA2022

Conference on Noise and Vibration Engineering, 2022, pp. 4044–405.

18

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5101506

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

https://doi.org/10.1016/j.jsv.2010.01.020
https://doi.org/10.1016/j.jsv.2010.01.020
https://doi.org/10.1061/(ASCE)ST.1943-541X.00009
https://doi.org/10.1016/j.cnsns.2021.105787
https://doi.org/10.1016/j.engstruct.2024.117517
https://doi.org/10.1016/j.engstruct.2024.117517
https://doi.org/10.1016/j.jsv.2016.12.039
https://doi.org/10.1115/1.4035377
https://doi.org/10.1016/j.ast.2024.109684
https://doi.org/10.1115/DETC2011-48502
https://doi.org/10.1063/5.0091935
https://doi.org/10.1063/5.0091935
https://doi.org/10.1007/s11071-016-2992-x
https://doi.org/10.1016/j.jsv.2018.02.052
https://doi.org/10.1007/s11071-006-9073-5
https://doi.org/10.1115/1.4038304
https://doi.org/10.1007/s11071-023-08423-9
https://doi.org/10.1007/s10483-023-2984-9
https://doi.org/10.1016/j.ast.2024.109409
https://doi.org/10.1007/978-3-031-40455-9_30
https://doi.org/10.1016/j.ymssp.2021.108706


[49] G. Habib, F. Romeo, The tuned bistable nonlinear energy sink, Nonlinear Dynamics 89 (1) (2017) 179–196. doi:10.1007/

s11071-017-3444-y.

[50] K. Dekemele, Tailored nonlinear stiffness and geometric damping: Applied to a bistable vibration absorber, International Journal of Non-

Linear Mechanics 157 (2023) 104548. doi:10.1016/j.ijnonlinmec.2023.104548.

[51] S. Fang, K. Chen, J. Xing, S. Zhou, W.-H. Liao, Tuned bistable nonlinear energy sink for simultaneously improved vibration suppression and

energy harvesting, International Journal of Mechanical Sciences 212 (2021) 106838. doi:10.1016/j.ijmecsci.2021.106838.

[52] L. Chen, X. Liao, G. Xia, B. Sun, Y. Zhou, Variable-potential bistable nonlinear energy sink for enhanced vibration suppression and energy

harvesting, International Journal of Mechanical Sciences 242 (2023) 107997. doi:10.1016/j.ijmecsci.2022.107997.

[53] X. Liao, L. Chen, H. Lee, A customizable cam-typed bistable nonlinear energy sink, International Journal of Mechanical Sciences 271 (2024)

109305. doi:10.1016/j.ijmecsci.2024.109305.

[54] Y. cheng Zeng, H. Ding, J.-C. Ji, X.-J. Jing, L.-Q. Chen, A tristable nonlinear energy sink to suppress strong excitation vibration, Mechanical

Systems and Signal Processing 202 (2023) 110694. doi:10.1016/j.ymssp.2023.110694.

[55] Y.-c. Zeng, H. Ding, A tristable nonlinear energy sink, International Journal of Mechanical Sciences 238 (2023) 107839. doi:10.1016/j.

ijmecsci.2022.107839.

[56] H. Chen, Y. Zeng, H. Ding, S. Lai, L. Chen, Dynamics and vibration reduction performance of asymmetric tristable nonlinear energy sink,

Applied Mathematics and Mechanics 45 (3) (2024) 389–406. doi:10.1007/s10483-024-3095-9.

[57] C.-H. Lamarque, O. V. Gendelman, A. Ture Savadkoohi, E. Etcheverria, Targeted energy transfer in mechanical systems by means of non-

smooth nonlinear energy sink, Acta Mechanica 221 (1) (2011) 175–200. doi:10.1007/s00707-011-0492-0.

[58] O. V. Gendelman, Bifurcations of nonlinear normal modes of linear oscillator with strongly nonlinear damped attachment, Nonlinear Dynam-

ics 37 (2004) 115–128. doi:10.1023/B:NODY.0000042911.49430.25.

[59] Y. Starosvetsky, O. Gendelman, Vibration absorption in systems with a nonlinear energy sink: Nonlinear damping, Journal of Sound and

Vibration 324 (3) (2009) 916–939. doi:10.1016/j.jsv.2009.02.052.

[60] M. Krack, J. Gross, Harmonic balance for nonlinear vibration problems, Vol. 1, Springer, 2019. doi:10.1007/978-3-030-14023-6.

[61] L. I. Manevitch, Complex Representation of Dynamics of Coupled Nonlinear Oscillators, Springer US, Boston, MA, 1999. doi:10.1007/

978-1-4615-4799-0_24.

[62] V. V. Smirnov, L. I. Manevitch, Complex envelope variable approximation in nonlinear dynamics, Russian Journal Of Nonlinear Dynamics

16 (2020) 491–515. doi:10.48550/arXiv.2004.08354.

[63] A. Haris, E. Motato, S. Theodossiades, H. Rahnejat, P. Kelly, A. Vakakis, L. A. Bergman, D. M. McFarland, A study on torsional vibration

attenuation in automotive drivetrains using absorbers with smooth and non-smooth nonlinearities, Applied Mathematical Modelling 46 (2017)

674–690. doi:10.1016/j.apm.2016.09.030.

[64] A. Haris, P. Alevras, M. Mohammadpour, S. Theodossiades, M. O’Mahony, Design and validation of a nonlinear vibration absorber to

attenuate torsional oscillations of propulsion systems, Nonlinear Dynamics 100 (2020) 33–49. doi:10.1007/s11071-020-05502-z.

[65] Y. Cao, Z. Li, J. Dou, R. Jia, H. Yao, An inerter nonlinear energy sink for torsional vibration suppression of the rotor system, Journal of Sound

and Vibration 537 (2022) 117184. doi:10.1016/j.jsv.2022.117184.

[66] Y. Cao, H. Yao, H. Li, J. Dou, Torsional vibration dynamics of a gear-shafting system attaching a nonlinear energy sink, Mechanical Systems

and Signal Processing 176 (2022) 109172. doi:10.1016/j.ymssp.2022.109172.

[67] Y. Cao, H. Yao, J. Dou, S. Han, Optimal design for torsional vibration suppression of non-smooth NES, Journal of Mechanical Science and

Technology 36 (11) (2022) 5399–5412. doi:10.1007/s12206-022-1006-9.

[68] Y. Cao, H. Yao, J. Dou, R. Bai, A multi-stable nonlinear energy sink for torsional vibration of the rotor system, Nonlinear Dynamics 110 (2)

(2022) 1253–1278. doi:10.1007/s11071-022-07681-3.

[69] J. Dou, H. Yao, Y. Cao, Z. Wang, Permanent magnet based nonlinear energy sink for torsional vibration suppression of rotor systems,

International Journal of Non-Linear Mechanics 149 (2023) 104321. doi:10.1016/j.ijnonlinmec.2022.104321.

[70] J. Dou, Z. Li, Y. Cao, H. Yao, R. Bai, Magnet based bi-stable nonlinear energy sink for torsional vibration suppression of rotor system,

19

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5101506

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

https://doi.org/10.1007/s11071-017-3444-y
https://doi.org/10.1007/s11071-017-3444-y
https://doi.org/10.1016/j.ijnonlinmec.2023.104548
https://doi.org/10.1016/j.ijmecsci.2021.106838
https://doi.org/10.1016/j.ijmecsci.2022.107997
https://doi.org/10.1016/j.ijmecsci.2024.109305
https://doi.org/10.1016/j.ymssp.2023.110694
https://doi.org/10.1016/j.ijmecsci.2022.107839
https://doi.org/10.1016/j.ijmecsci.2022.107839
https://doi.org/10.1007/s10483-024-3095-9
https://doi.org/10.1007/s00707-011-0492-0
https://doi.org/10.1023/B:NODY.0000042911.49430.25
https://doi.org/10.1016/j.jsv.2009.02.052
https://doi.org/10.1007/978-3-030-14023-6
https://doi.org/10.1007/978-1-4615-4799-0_24
https://doi.org/10.1007/978-1-4615-4799-0_24
https://doi.org/10.48550/arXiv.2004.08354
https://doi.org/10.1016/j.apm.2016.09.030
https://doi.org/10.1007/s11071-020-05502-z
https://doi.org/10.1016/j.jsv.2022.117184
https://doi.org/10.1016/j.ymssp.2022.109172
https://doi.org/10.1007/s12206-022-1006-9
https://doi.org/10.1007/s11071-022-07681-3
https://doi.org/10.1016/j.ijnonlinmec.2022.104321


Mechanical Systems and Signal Processing 186 (2023) 109859. doi:10.1016/j.ymssp.2022.109859.

[71] J. Dou, H. Yao, Y. Cao, S. Han, R. Bai, Enhancement of bistable nonlinear energy sink based on particle damper, Journal of Sound and

Vibration 547 (2023) 117547. doi:10.1016/j.jsv.2022.117547.

[72] Y. Cao, G. Yan, J. Lu, W. Zhang, Suppression of multi-modal torsional vibration of the long-shafting rotor system with nonlinear piecewise

NES, International Journal of Non-Linear Mechanics 159 (2024) 104617. doi:10.1016/j.ijnonlinmec.2023.104617.

[73] O. V. Gendelman, E. Gourdon, C. H. Lamarque, Quasiperiodic energy pumping in coupled oscillators under periodic forcing, Journal of

Sound and Vibration 294 (4) (2006) 651–662. doi:10.1016/j.jsv.2005.11.031.

[74] R. J. Kuether, L. Renson, T. Detroux, C. Grappasonni, G. Kerschen, M. S. Allen, Nonlinear normal modes, modal interactions and isolated

resonance curves, Journal of Sound and Vibration 351 (2015) 299–310. doi:10.1016/j.jsv.2015.04.035.

20

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5101506

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

Vi
ew

 p
ub

lic
at

io
n 

st
at

s

https://doi.org/10.1016/j.ymssp.2022.109859
https://doi.org/10.1016/j.jsv.2022.117547
https://doi.org/10.1016/j.ijnonlinmec.2023.104617
https://doi.org/10.1016/j.jsv.2005.11.031
https://doi.org/10.1016/j.jsv.2015.04.035
https://www.researchgate.net/publication/388129896

	Introduction
	Dynamic model description
	Equations of motion
	Complexification-Averaging
	Insights from analytical calculations

	Design Methodology
	Conceptual design and piecewise approximation of nonlinearity
	Material stress and local resonance

	Design optimization
	Analytical results and Experimental validation
	Conclusions
	Stability of slow flow dynamics
	Stability of SIM

