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Abstract

This study investigates the control of an impulsively excited one-degree-of-
freedom (DOF) oscillator with softening stiffness, modelled with an arctangent
characteristic. The goal is to control the host system’s vibrations by transferring
the vibrational energy to an active controller. To this end, a Virtual Mechanical
System (VMS) control law is implemented. This law is characterised by controller
dynamics, which describe the behaviour of a mechanical system coupled to the
host system skew-symmetrically in the velocities and having stiffness identical to
that of the host system. The hypothesis is that this similarity and unique cou-
pling facilitate energy transfer. By using the Complexification-Averaging (CxA)
technique and examining the slow flow dynamics wrt. fixed points, bifurcations
and impulsive orbits, the conditions for energy transfer are uncovered, enabling
tuning of the controller.

Keywords: Nonlinear dynamics, Bifurcations, Energy threshold, Passivity based
control, Active vibration control
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1 Introduction

Nonlinear dynamical systems exhibit complex behaviours that can pose challenges
regarding control and stability [1, 2]. In particular, active feedback control strategies,
while effective in many scenarios, can introduce instabilities under certain condi-
tions. Passivity-Based Control (PBC) provides a robust methodology to address these
challenges. The PBC framework, comprising interconnected passive dynamical sys-
tems, inherently preserves passivity, ensuring input-output stability [3]. Various PBC
strategies have been developed [4–8].

In this work, a passive single-degree-of-freedom (SDOF) nonlinear oscillator (host)
is coupled to a passivity-based active controller, referred to as the Virtual Mechanical
System (VMS) because of the underlying Euler-Lagrange model that yields the control
force. This controller was first introduced in [9], based on the work of L. Luyckx et
al. [10]. The host’s nonlinearity is a softening stiffness nonlinearity, modelled as an
arctangent, to portray saturation.

This type of stiffness characteristic is typical for constant force or constant torque
mechanisms, which have applications in exoskeletons [11], aerospace [12], and robotic
end-effectors like compliant fingers [13], grippers [14, 15] and polishing or deburring
devices [16]. A softening stiffness is also used in passive vibration control [17, 18].
Different mechanisms have been designed to achieve this type of elastic force or torque
[19–21]. This work offers insights into vibration control of systems with a softening
stiffness characteristic when excited by an impulsive load.

The VMS control strategy differs from the previously mentioned PBC strategies
as it describes an auxiliary structure which is excited by the velocity of the host and
coupled to the host system skew-symmetrically [9]. This control loop is illustrated in
Fig. 1. The unique skew-symmetric interconnection is conservative and ensures the
preservation of passivity. The hypothesis is that the skew-symmetric coupling (with
factor N), as seen in gyroscopic systems, facilitates energy transfer to the auxiliary
system [9]. Note that the auxiliary system is virtual and only used to calculate the
active control force, hence the name. Next to the stability property, another advantage
is that well-developed techniques employed with passive vibration absorbers can be
used to gain insights into the VMS tuning strategy. Here, as is the case in passive
vibration absorbers, the principle of similarity is applied [22, 23], as the VMS copies
the host’s nonlinear stiffness characteristic.

A key part of this study is the analysis of nonlinear phenomena, such as bifur-
cations. By leveraging nonlinear phenomena, such as nonlinear beating or internal
resonance, energy displacement from host to VMS can be induced. Investigating this
energy transfer is the main focus of this work.

The paper is structured as follows. In Section 2, the considered host system is
defined. Furthermore, the equations of motion and controller dynamics are introduced.
To facilitate the analytical investigation, the dimensionless equations are obtained
in Sec. 2.1. Next, semi-analytical techniques are employed to analyse the dynam-
ics. These tools enable the systematic investigation of energy transfer thresholds and
provide insights into the underlying bifurcation mechanisms. Section 3 describes the
complexification-averaging (CxA) analysis [24, 25]. Further, a bifurcation analysis is
conducted in Section 4. The findings are visualised using impulsive orbits (IO) [26].
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The results are presented and discussed in Section 5 and translated into a practical
tuning strategy. By discussing trade-offs from a control perspective, a framework is
provided for optimising the controller’s performance. In Section 6, an illustrative exam-
ple is given of how to apply this control strategy. Furthermore, by adding a damping
term to the controller dynamics, the vibration energy is not only transferred but also
dissipated. Finally, a conclusion is presented in Section 7.

Overall, this study contributes to the growing intersection of vibration control
and nonlinear dynamics, offering a novel perspective on active control strategies and
their potential to influence the energy distribution in nonlinear systems for practical
advantage.

Fig. 1: Model of the active vibration control architecture with a VMS control law and
impulse load

2 Model

As described before, the host system is a single-degree-of-freedom nonlinear system
excited by an impulsive load. This is shown in Fig. 2a. The nonlinearity is embedded
in the spring.

(a) (b)

Fig. 2: a) A schematic of host system to be controlled, excited by an impulse load
b) The nonlinear elastic force characteristic of the host system, and mimicked in the
controller dynamics
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The equation of motion of the host system is

m
d2x(t)

dt2
+ γ arctan

a

γ
x(t) + ϵax(t) = Fδ(t), (1)

where m ∈ R>0 is the mass with unit kilograms, x ∈ R is the displacement in metres,
K(x) = γ arctan a

γx + ϵax represents the nonlinear stiffness force in Newton and

Fδ(t) is an external impulse load, which also has unit newton. The nonlinear elastic
force K(x) is defined by parameters γ ∈ R>0, with unit newton, and a ∈ R>0, with
[a] = N

m . The nonlinear stiffness part is Knl(x) = γ arctan a
γx. The characteristic of the

nonlinear elastic force is depicted in Fig. 2b. As shown, γ determines that saturation
force and a represents the slope of Knl at the origin. The larger a, the steeper the
arctangent characteristic is near the origin. This arctangent term is strongly nonlinear,
and a small (ϵ = 0.01) linear term is added to ensure the stiffness force does not
saturate completely.

The VMS control law is applied to the host system as shown in Fig. 1. The con-
troller adds dynamics to the system. The control force is obtained by evaluating an
auxiliary structure (the VMS) which is excited by the velocity of the host and coupled
to the host system skew-symmetrically [9]. To model this auxiliary system, the prin-
ciple of similarity is applied [22, 23], as the VMS copies the host’s nonlinear stiffness
characteristic. The following equations of motion describe the host system and con-

troller. Note that −N dy(t)
dt is the control force and Fδ(t) is an external impulse load ,

where δ(t) is the unit impulse.

{
md2x(t)

dt2 + γ arctan a
γx(t) + ϵax(t) = −N dy(t)

dt + Fδ(t)

md2y(t)
dt2 + γ arctan a

γ y(t) + ϵay(t) = N dx(t)
dt

(2)

Here, x represents the displacement of the main system and y represents the virtual
displacement of the VMS control law. For brevity, the explicit time-dependence is
omitted in the notation from here on. The host and controller are coupled skew-
symmetrically in the velocities, with coupling parameter N ∈ R. Due to the nature
of the coupling between controller and host system, the combined system is stable, as
proven in [9]. Note that the coupling is conservative, there are no dissipative terms in
the equation of motion. The merit of this coupling is that it fundamentally changes
the model structure. As in gyroscopic systems, the coupling induces a ±π

2 phase shift
between host and controller coordinates, which facilitates energy transfer [27].

2.1 Dimensionless system

In order to reduce the complexity of the analysis, dimensionless time and displacement
are introduced. The dimensionless displacements are defined as q = αx and z = αy,
where α = a

γ and [α] = m−1. The dimensionless time is defined as τ = βt, where

β =
√

a
m and [β] = s−1. These transformations lead to the following dimensionless

equations:
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{
q̈ + arctan q + ϵq = −nż

z̈ + arctan z + ϵz = nq̇
, (3)

where n = N√
am

and the notation d
dτ = □̇ is used. Note that the impulse excitation

on the host system is replaced with an equivalent initial velocity q̇(0). The relation

to the dimensional initial condition is q̇(0) =
√
am
γ

dx(0)
dt and dx(0)

dt follows from the

impulse load Fδ(t) as dx(0)
dt =

∫ Fδ(t)
m dt = F

m .Remark that the coupling term n is the
only parameter that can be tuned to control the host system. The focus of this work
is investigating the influence of this control parameter n and offering insights into the
tuning strategy.

3 Complexification-averaging method

To study this system, first the Complexification-Averaging (CxA) method [24] is
applied to obtain the slow flow equations, as done by Quinn et al. in [25]. Next,
the bifurcations that these equations exhibit are investigated and the corresponding
behaviours are analysed using phase plots and impulsive orbits.

3.1 Complexification

The following transformations are performed.{
ρ1e

jωτ = q̇ + jωq

ρ2e
jωτ = ż + jωz

(4)

Here, j is the imaginary unit, with j2 = −1, ω ∈ R is constant and ρ1,2 ∈ C. One
can see that ρ1,2 are measures for the amplitude of the velocity of respectively q and
z. Here, we implicitly assume one dominant high frequency, ω, and amplitude and
phase modulation, captured by ρ1,2. The validity of this assumption is assessed in
Section 3.4. From (4), one can find the following expressions for q, q̇ and q̈. Analogous
expressions can be found for z, ż and z̈.

q =
1

2jω
(ρ1e

jωτ − ρ∗1e
−jωτ ) z =

1

2jω
(ρ2e

jωτ − ρ∗2e
−jωτ )

q̇ =
1

2
(ρ1e

jωτ + ρ∗1e
−jωτ ) ż =

1

2
(ρ2e

jωτ + ρ∗2e
−jωτ )

q̈ = ρ̇1e
jωτ + jωρ1e

jωτ − jω
1

2
(ρ1e

jωτ + ρ∗1e
−jωτ ) z̈ = ρ̇2e

jωτ + jωρ2e
jωτ − jω

1

2
(ρ2e

jωτ + ρ∗2e
−jωτ )

(5)
where □∗ denotes the complex conjugate. After substituting these expressions into

Eq. (3), one finds

5




ρ̇1e

jωτ + ρ1e
jωτ

(
jω
2 + ϵ

2jω

)
− ρ∗1e

−jωτ
(

jω
2 + ϵ

2jω

)
+ arctan

[
1

2jω

(
ρ1e

jωτ − ρ∗1e
−jωτ

)]
= −n

2

(
ρ2e

jωτ + ρ∗2e
−jωτ

)
ρ̇2e

jωτ + ρ2e
jωτ

(
jω
2 + ϵ

2jω

)
− ρ∗2e

−jωτ
(

jω
2 + ϵ

2jω

)
+ arctan

[
1

2jω

(
ρ2e

jωτ − ρ∗2e
−jωτ

)]
= n

2

(
ρ1e

jωτ + ρ∗1e
−jωτ

) .

(6)

3.2 Averaging

In order to analyse the slow time behaviour, Eq. (6) can be averaged over the fast
period.

dρ̄i
dτ

=
ω

2π

∫ τ+ π
ω

τ− π
ω

ρ̇i(τ)dτ (7)

The variables ρ̄i (i = 1, 2) represent the running average of ρi over one period 2π
ω .

Due to ρi being slowly varying, as assumed in the complexification step, the running
averages ρ̄i approximate ρi.

By applying Eq. (7), the following equations are obtained.
dρ̄1

dτ = −ρ̄1

(
jω
2 + ϵ

2jω

)
− n

2 ρ̄2 +
jωρ̄1

ρ̄1ρ̄1
∗

(√
ρ̄1ρ̄1

∗

ω2 + 1− 1

)
dρ̄2

dτ = −ρ̄2

(
jω
2 + ϵ

2jω

)
+ n

2 ρ̄1 +
jωρ̄2

ρ̄2ρ̄2
∗

(√
ρ̄2ρ̄2

∗

ω2 + 1− 1

) (8)

The obtained averaged equations describe the slow flow behaviour: ρ̄1 and ρ̄2 are
an approximation of the envelopes of the time responses of q̇ and ż, respectively, as
illustrated in Fig. 3.

3.3 Transformation to polar coordinates

To interpret the slow flow equations, we are interested in the magnitude and phase of
ρ̄i, i = 1, 2. Therefore, a transformation to polar coordinates is introduced:{

ρ̄1 = a1e
jθ1

ρ̄2 = a2e
jθ2

(9)

with, a1,2 ∈ R and θ1,2 ∈ R. Defining ϕ = θ1 − θ2, one obtains a new set of equations
governing the slow behaviour. Note that ϕ represents the phase difference between q̇
and ż, while a1 and a2 represent the amplitudes of the envelopes of q̇ and ż respectively.


ȧ1 = −n

2 a2 cos(ϕ) = f1(a1, a2, ϕ)

ȧ2 = n
2 a1 cos(ϕ) = f2(a1, a2, ϕ)

ϕ̇ = n
2 sin(ϕ)

(
a2

a1
− a1

a2

)
+ ω

√
a2
1

ω2 +1−1

a2
1

−

√
a2
2

ω2 +1−1

a2
2

 = f3(a1, a2, ϕ)

(10)
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Note that r is an integral of motion of this system.

r2 = a21 + a22

2rṙ = 2a1ȧ1 + 2a2ȧ2 = 0
(11)

Using this integral of motion, we can lower the dimension from a third-order to a
second-order system of equations.

Furthermore, r is a measure for the energy in the controlled (conservative) system.
As an impulsive load on the host system is considered, at t = 0 there is only kinetic
energy, E(0) = m

2 ẋ(0)
2. The relationship between the initial conditions is r = a1(0) =

q̇(0) =
√
am
γ ẋ(0). Thus, as a1 is a measure for the envelope of q̇ and consequently

proportional to ẋ, r2 is also a measure for the energy in the system: r2 ∝ a1(0)
2 ∝

q̇(0)2 ∝ ẋ(0)2 ∝ E.

3.4 Validity of slow flow equations

In Figure 3, the slow flow amplitudes a1 and a2 from Eq. (10) with initial conditions
a1(0) = r, a2(0) = 0 are plotted together with the time responses of q̇ and ż from
Eq. (3) with initial condition q̇(0) = r. One can see that the slow flow amplitudes, a1
and a2, are good measures for the envelopes of the time responses of q̇ and ż. For the
cases here where r = 0.5 and/or n = 0.2 (Figs. 3a, 3d, 3g, 3h and 3i), we see a beating
phenomenon. This means, at some point, the amplitude of a1 is minimal while a2 is
maximal, and most energy has been transferred from the host system to the controller.

For a certain energy range (r ≤ 3, see Fig. 3), the assumptions made during the
complexification in Eq. (4) are valid. Although the periods of the envelopes obtained
from the slow flow equations are not exact (for example, in Fig. 3e), they do capture
the amplitudes of q̇ and ż well and they can accurately describe whether energy is
exchanged between the host system and the controller.

However, for high energy, as depicted in Fig. 4 and most noticeable in 4c, the slow
flow equations fail to capture the behaviour of the system. The responses of q̇ and
ż resemble a sawtooth wave, which indicates the presence of third and higher-order
harmonics. Therefore, the assumptions made with respect to the dominant frequencies
lose their validity. Furthermore, for some values of n and r > 3 the system seems to
exhibit chaotic behaviour. This is investigated further in Section 3.4.1.

3.4.1 Chaotic nature of system

According to S. H. Strogatz, chaos can be defined by three key behaviours [28]: ape-
riodic long-term behaviour, being deterministic, and sensitive dependence on initial
conditions.

For high enough energies, chaos-like behaviour can be observed. To support
this statement, Figure 5 shows aperiodic long-term behaviour. Next, the system is
described by Equation (2) or (3) and is by definition deterministic. Finally, by show-
ing two very close initial conditions with very different responses, the third condition
is fulfilled. A closer look at the responses between 1000-1250s on Fig. 5 shows clearly
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(a) q̇(0) = 0.5, n = 0.05 (b) q̇(0) = 2, n = 0.05 (c) q̇(0) = 3, n = 0.05

(d) q̇(0) = 0.5, n = 0.1 (e) q̇(0) = 2, n = 0.1 (f) q̇(0) = 3, n = 0.1

(g) q̇(0) = 0.5, n = 0.2 (h) q̇(0) = 2, n = 0.2 (i) q̇(0) = 3, n = 0.2

Fig. 3: Time responses and slow flow behaviour for different energies and values of n.

different behaviour for a slightly higher impulse load. Moreover, a positive maxi-
mal Lyapunov exponent confirms this condition of sensitive dependence on initial
conditions.

The method by R. Wiebe et al. [29] offers a strategy for identifying chaos based on
the frequency content. The method is based on the phenomenon that the frequency
spectrum of a chaotic response has more peaks than a well-behaved response. First,
the frequency spectrum of the response of the host system is obtained and scaled such
that the highest peak has a magnitude of one. Next, a threshold is chosen, usually a
small percentage of the maximal peak height. Here, this threshold is set to 0.05 or 5%
of the maximal peak value. Finally, the number of peaks that rise above the threshold
is counted. This metric is visualised in Fig. 6 for a range of r = [0, 5] and n = [0, 0.3].
The blue (darker) areas have few peaks in their frequency spectrum, the cases that
are green and yellow (lighter areas) have more. One can remark the area with more
frequency peaks around n = 0.2 and r ∈ [3, 5].
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(a) r = 5, n = 0.05 (b) r = 5, n = 0.1 (c) r = 5, n = 0.2

Fig. 4: Time responses and slow flow behaviour for high energy and different values
of n.

(a) r = 4

(b) r = 4.0001

Fig. 5: Time responses of q and z for n = 0.2 with slightly different initial conditions

Finally, a second threshold is chosen to discern well-behaved and chaotic responses.
Responses with a peak count of ten or more are classified as chaotic, and visualised
in Figure 7. Notably, these chaotic responses can occur for r > 3.

To substantiate this result, time responses and frequency spectra are shown in Fig.
8 for the four cases indicated with A, B, C and D on Fig. 6. Case C is in the chaotic
region. Its frequency spectrum in Fig. 8f is distinctively different from the other cases
and clearly shows how chaos manifests itself in the frequency response.
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Fig. 6: Number of local maxima of the frequency spectrum above the threshold

Fig. 7: Classification of chaos according to [29] using a threshold of 10 peaks

As chaotic behaviour requires a different control approach, the energy range is
limited in this analysis. Values for r are considered up to 3 to avoid the chaotic region
and ensure the assumptions remain relevant. This limit on the dimensionless parameter
r ≤ 3 means that the dimensionless initial velocity of the host system is limited to
q̇(0) ≤ 3 and the physical velocity is limited to ẋ(0) ≤ 3γ√

am
. This way, in the regarded

energy range, the slow flow equations can lead to valuable insights into the influence
of n on the energy exchange between the host system and the VMS controller.

4 Bifurcation analysis

Bifurcation analysis is a method that offers a comprehensive understanding of the
system’s dynamics. A local bifurcation occurs when a parameter variation causes a
qualitative change in dynamics. For example, fixed points can be created, destroyed
or change its stability [28]. In order to find a threshold for energy transfer from the
host to the controller, the fixed points are investigated.

4.1 Fixed points

Fixed points represent equilibrium or steady state solutions of a system. To find the
fixed points of the slow flow equations, we set f1(a1, a2, ϕ) = 0, f2(a1, a2, ϕ) = 0 and

10



(a) A: n = 0.13, r = 1 (b) A: n = 0.13, r = 1

(c) B: n = 0.15, r = 2.4 (d) B: n = 0.15, r = 2.4

(e) C: n = 0.18, r = 3.4 (f) C: n = 0.18, r = 3.4

(g) D: n = 0.08, r = 3.2 (h) D: n = 0.08, r = 3.2

Fig. 8: Time responses and frequency spectra for cases shown in Fig. 6
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f3(a1, a2, ϕ) = 0, where f1,2,3 are defined in Eq. (10). Analytically, from the first two
equations, we can conclude that ϕ = ±π

2 is required to guarantee that f1 and f2 are
zero. The only other solution is a1 = a2 = 0, corresponding to the system at rest. To
find the fixed points, f3 = 0 must be solved for both values of ϕ. This is investigated
in the next paragraphs.

4.1.1 Case 1: ϕ = π
2

To find the expressions of the fixed points, the third equation from Eq. (10) must be
solved for ϕ = π

2 .

ϕ̇

∣∣∣∣
ϕ=π

2

=
n

2

(
a2
a1

− a1
a2

)
+ ω


√

a2
1

ω2 + 1− 1

a21
−

√
a2
2

ω2 + 1− 1

a22

 = 0 (12)

This equation is evaluated numerically for different values of n and r, defined by
Eq. (11). The results are plotted in Fig. 9 as a function of a1. Note that, as r is fixed,
a2 is completely defined by a1. The behaviour for n ∈ [10−5 1] and r ∈ [10−5 3] is
qualitatively the same.

Fig. 9: ϕ̇

∣∣∣∣
ϕ=π

2

in function of a1, here r = 2, n = 0.2

Expression (12) only becomes zero if a1 = a2, the outer points of the graph corre-
spond to a1 = 0 and a1 = r, equivalent to a2 = 0. In these two cases, expression (12)
is undefined. The only solution here, considering a1a2 > 0, is a1 = a2. This solution
corresponds to a line of fixed points in the space (a1, a2, ϕ), depicted in Fig. 10.
However, when regarding a constant energy level, or equivalently a fixed r, this line
of fixed points becomes an isolated point on the half sphere of constant r. Note that
we only regard a1 and a2 having the same sign, as having different signs is equivalent
to a phase shift of π rad, i.e. the case where ϕ = −π

2 , investigated in Section 4.1.2.
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ϕ

a2

a1 r

Fig. 10: Coordinate reference frame for slow flow equations

Stability of fixed points
The stability of these fixed points is investigated using the Jacobian.

J

∣∣∣∣
ϕ=π

2 ;a1=a2=a

=

 0 0 na
2

0 0 −na
2

J31 −J31 0

 (13)

Here a = r√
2
∈ R, and

J31 = −n

a
+ ω

− a2

ω2 + 2
√

a2

ω2 + 1− 2

a3
√

a2

ω2 + 1

 . (14)

The eigenvalues of the Jacobian in this case are λ1 = 0 and λ2,3 = ±
√
naJ31. As

we have a line of fixed points, the zero eigenvalue is expected. To find out what type
of fixed points we are dealing with, the sign of naJ31 is of importance.

aJ31 = n+ ω

 a2

ω2 + 2
√

a2

ω2 + 1− 2

a2
√

a2

ω2 + 1

 (15)

This expression is evaluated numerically for n ∈ [10−5 1] and r ∈ [10−5 3]. A numerical
investigation shows that this factor is always negative. This means, considering the
system is reversible (see Section 4.2), that the fixed points are nonlinear centres on
each surface of constant energy.

4.1.2 Case 2: ϕ = −π
2

The expression for ϕ̇, given that ϕ = −π
2 becomes
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ϕ̇

∣∣∣∣
ϕ=π

2

= −n

2

(
a2
a1

− a1
a2

)
+ ω


√

a2
1

ω2 + 1− 1

a21
−

√
a2
2

ω2 + 1− 1

a22

 = 0 (16)

As in Section 4.1.1, a1 = a2 remains a solution for every n. However, in this case,
there are more fixed points possible. The extra fixed points are numerically investigated
for fixed r and n.

(a) r = 0.5 and n = 0.01 (b) r = 0.5 and n = 0.028 (c) r = 0.5 and n = 0.2

Fig. 11: ϕ̇

∣∣∣∣
ϕ=−π

2

in function of a1 for r = 0.5 and different values of n

In Fig. 11, the course of ϕ̇

∣∣∣∣
ϕ=−π

2

(Eq. 16) is plotted in function of a1, while r is

fixed to be r = 0.5. The zeros of this expression are indicated with black dots and
represent fixed points of the slow flow dynamics. For small n, there are three fixed
points: one at a1 = a2 = r√

2
and two outer points very close to a1 = 0 and a1 = r.

For increasing n, the outer points get closer to a1 = a2 and around n = 0.028, these
two fixed points disappear, so only the fixed point at a1 = a2 remains. The same
behaviour can be seen for a higher energy level.

To clarify the relationship between n, r and the number of fixed points, Fig. 12
shows the fixed points in the (a1, a2, ϕ = −π

2 ) plane for different values of n. The
distance to the origin is r. Remember that r is a measure for the energy in the system.
The figure is created by numerically evaluating Eq. (16) for fixed n and r to find the
values of a1 and a2 of the fixed points.

As shown in Fig. 12, the fixed points at a1 = a2 are present for all n, while the
curved line of fixed points varies with n. Looking at the case where n = 0.2, we see
that if r = 1, there is only 1 intersection between the dashed arc of constant r and the
black lines of fixed points for n = 0.2. The only fixed point in this case is a1 = a2 = 1√

2
.

When we increase r to 1.383, the dashed arc touches the location where two extra
fixed points appear. A red circle on the figure indicates this case. For n = 0.2, the
bifurcation takes place at r = 1.838. For lower energy levels (ex. r = 1), there is one
fixed point and for higher energy levels (ex. r = 3) there are three fixed points. The
higher n, the higher the energy at which the bifurcation occurs.
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Fig. 12: Fixed points for ϕ = −π
2 for different values of n

From a control perspective, as n is the tuning parameter and r depends on the
magnitude of the impulse, it is more interesting to consider a fixed r and look at
the influence of a varying n. Considering r = 1.838, choosing n > 0.2 results in only
one fixed point, while choosing n < 0.2 leads to three fixed points. Furthermore, the
smaller n, the closer the two extra fixed points are to the axes (a1 = 0 and a2 = 0).

Do note that, in this section, only the fixed points for ϕ = −π
2 are regarded. There

is always one supplementary fixed point for ϕ = π
2 present, independent of the values

of r and n. In general, for a fixed n, small energy levels correspond to two fixed points
at a1 = a2 and ϕ = ±π

2 . When r increases, a bifurcation occurs and two extra fixed
points appear, leading to four fixed points in total.

Stability of fixed points
For the fixed point at a1 = a2, the Jacobian can be evaluated to find its type.

J

∣∣∣∣
ϕ=−π

2 ;a1=a2=a

=

 0 0 −na
2

0 0 na
2

K31 −K31 0

 (17)

Where

K31 =
n

a
+ ω

 a2

ω2 − 2
√

a2

ω2 + 1 + 2

a3
√

a2

ω2 + 1

 . (18)

The eigenvalues of the Jacobian are calculated to be λ1 = 0 and λ2,3 = ±
√
−naK31.

A numerical evaluation for fixed n shows that, for the low energy region, where
there is only 1 fixed point, λ2,3 are imaginary, and thus, the fixed point is a centre
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on the surface of constant energy. When the energy is increased, λ2,3 become 2 real
roots with opposite sign. The instance when λ2,3 become real is when the bifurcation
occurs and two extra fixed points appear. After this bifurcation, the fixed point at
a1 = a2 = r√

2
becomes a saddle point on the surface of constant energy and the two

new fixed points are nonlinear centres.

4.2 Reversibility

The undamped system in Eq. (3) is reversible under the transformation

{
(q, z) 7→ R(q, z), where R(q, z) = (−q,−z)

t 7→ −t.
(19)

This property allows us to make conclusions about nonlinear centres based on the
Jacobian.

4.3 Phase plots

The dynamics of the slow flow equations can be visualised in a 3D plot. Figure 10
shows the chosen reference frame. Recall that r2 = a21+a22 is an integral of motion, as
shown in Eq. (11). This means the trajectories of the slow flow dynamics are bounded
to a spherical surface in the (a1, a2, ϕ) space with a centre at the origin and radius
r =

√
a21 + a22, corresponding to the energy of the system.

Further, as a1 represents an amplitude modulation, a negative sign does not add
any new information. Thus, we can consider only the top half section of the sphere
without loss of information. And consequently, depict the trajectories in a 2D graph
by regarding the top view (from the a1 direction in Fig. 10). This top view of the
trajectories on the sphere for r = 1 is shown in Figure 13b. Note that the blue line
corresponds to ϕ = π

2 , and there is one fixed point (centre) on this line at a1 = a2 = r√
2
.

The red line corresponds to ϕ = −π
2 and can have one or three fixed points. For the

case depicted in Fig. 13b, r = 1 and n = 0.05, leading to three fixed points, one centre
and two saddle points. Figure 13a can be seen as a cross section of Figure 13b at
ϕ = −π

2 (indicated by the red line). The fixed points indicated in red on Fig. 13a are
the ones visible on the phase plot in Fig. 13b.

This way of representing the phase plots leads to the origin corresponding to a1
being maximal (a1 = r and a2 = 0), so all energy is in the host system. On the
circumference of this view, a2 = r, a1 = 0 and all energy is in the controller. This
means that the behaviour we are looking for corresponds to a trajectory which starts
in the origin (all energy is situated in the host system initially because of the applied
initial speed) and goes to the outer area of the plot, which corresponds to all energy
being in the controller. The control parameter n should be chosen in a way to ensure
this energy transfer.
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(a) Fixed points for ϕ = −π
2 (b) Phase plot

Fig. 13: Fixed points and phase plot for r = 1 and n = 0.05

4.4 Impulsive orbits

An impulsive orbit is the trajectory of the slow flow dynamics, described by Eq. (10),
followed if an impulse is applied to one of the degrees of freedom. Here, we consider
the case where an impulse is exerted on the host system, equivalent to the initial
conditions a1(0) = r > 0 and a2(0) = 0. Some impulsive orbits are depicted in red
on the phase plots in Fig. 14. The starting point is the origin of the plots, indicated
with a square marker. The course of the impulsive orbit corresponds to the location
of the energy within the controlled system. If it stays close to the origin, the energy
remains mostly in the host system. If it reaches the outer area on the other hand, a2
approaches r and we can conclude energy transfer to the controller is significant.

5 Results and discussion

An analysis of the phase plots and impulsive orbits can clarify the behaviour of the
system. They are shown for the case of r = 1 in Figure 14. The lines are trajectories
of the slow flow dynamics. Indicated in red are the impulsive orbits, which start in the
origin indicated with a square marker, and in blue are the homoclinic orbits, which
end at the saddle point.

The time responses corresponding to the impulsive orbits are depicted in 15. In Fig.
15a, the energy stays mostly in the host system. After the impulsive orbit escapes the
homoclinic orbit, energy transfer occurs, as seen in Fig. 15b. Do note that the energy
transfer here is relatively slow (see time axis). This is due to the trajectory being close
to the saddle point, which slows down the dynamics. This also means that around the
energy transfer threshold, the assumption of a fast frequency ω and slow amplitude
modulation captured in ρi is always valid. For n increased further, two fixed points
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(a) n = 0.04 (n < nc) (b) n = 0.05 (nc < n < nb) (c) n = 0.2 (nb < n)

Fig. 14: Phase plots for r = 1 and different values of n with impulsive orbits indicated
in red and homoclinic orbits in blue

disappear. The time response in Fig. 15c show that the energy transfer is maintained
and the amplitude modulation varies faster.

(a) n = 0.04 (b) n = 0.05 (c) n = 0.2

Fig. 15: Time responses corresponding to the impulsive orbits indicated on the phase
plots in Fig. 14 for r = 1 and different values of n

As the control parameter n increases, the first change in fundamental behaviour
is induced by the impulsive orbit escaping the homoclinic orbit, at a critical value nc.
The next one is the bifurcation at nb, where the transition from four fixed points to
two fixed points occurs. The cases n < nc, nc < n < nb and nb < n are discussed
in-depth in the next sections.

5.1 n < nc

For small values of n, as shown in Figure 14a, there are four fixed points. One fixed
point for ϕ = π

2 and three for ϕ = −π
2 . The two centres for ϕ = −π

2 are situated close
to a1 = r, a2 = 0 (the origin) and a1 = 0, a2 = r (the bottom of the plot). This can
be confirmed by looking at Fig. 12. The smaller n, the closer two of the fixed points
are to the axes. Note that the saddle point always remains located at a1 = a2 = r√

2
.
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Due to this placement of the centres, the homoclinic orbit, which ends in the saddle
point, traps the impulsive orbit. Therefore, the impulsive orbit stays close to the origin
and most energy remains in the host system. This is also illustrated in Fig. 15a.

5.2 nc < n < nb

As n increases, the two centres for ϕ = −π
2 move closer to the saddle point, see Fig.

12. For a critical value of n = nc, the homoclinic orbit coincides with the impulsive
orbit and the trajectory starting in the origin (a1 = r, a2 = 0) ends in the saddle
point for τ → ∞.

Once n > nc, the impulsive orbit escapes the homoclinic orbit and reaches the
area where a2 ≈ r. This means approximately all energy is transferred from the host
system to the controller. Do note that this transfer of energy is relatively slow when
the impulsive orbit is close to the saddle point, as Fig. 15b shows.

5.3 n > nb

By increasing the control parameter n even further, a bifurcation occurs and only two
fixed points remain, which are both centres. In this case, the impulsive orbit always
reaches the outer area, see Fig. 14c, and energy is transferred consistently between
the host system and the VMS controller through nonlinear beating, which is visible
on the time response in Fig. 15c.

5.4 Bifurcation diagram

Fig. 16: Bifurcation diagram, with energy transfer threshold value nc indicated in a
dashed blue line

These insights can be generalised to other values of r using the bifurcation diagram
in Figure 16. This diagram is achieved by evaluating nb and nc for a range r ∈ [0, 3].
Here, nb is calculated by evaluating how many fixed points are present according to
Eq. (16), as explained in Section 4.1.2. While nc is calculated by evaluating the slow
flow equations (10). More specifically, when a1 goes to zero, energy transfer is present.
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Once again, three areas can be considered in this bifurcation diagram. The thick
black line represents nb, where the bifurcation occurs. This line separates the situa-
tions where two or four fixed points are present. The dashed line represents nc, the
critical threshold for energy transfer. The area under the dashed line on the diagram
corresponds to most energy remaining in the host system. Above the dashed line, sig-
nificant energy transfer to the controller is achieved. The larger the control parameter
n, corresponding to higher areas on the diagram (for a fixed r), the faster the energy
flows back and forth between the host system and the controller. Using this diagram,
the threshold for energy transfer nc can be found for any value of r within the regarded
range.

Remark that the dashed line of nc on Fig. 16 corresponds to the visible border of
Fig. 6. Under this line, there are fewer frequency peaks and no energy transfer. For
the cases where significant energy transfer to the controller is present, the response
contains more frequencies.

5.5 Discussion on controller tuning

Figure 16 gives an understanding of which values of the control parameter n lead
to energy transfer between host and controller and which values do not. Recall that
the skew-symmetric appearance of n in the equations of motion creates an energy-
conserving interconnection. As in gyroscopic systems, this type of connection creates
a 90° phase shift, which induces energy transfer between the coupled systems. The
goal is, first, to transfer the energy to the controller system. Second, the energy is
inhibited from travelling back to the host by harvesting or dissipation. A good choice
for n depends on set control objectives and practical considerations. Here, two general
trade-offs are discussed.

5.5.1 Speed of energy transfer

To make a well-founded choice for n, one must take into consideration the speed of
energy transfer. The trajectories near the homoclinic orbit are very slow, so choosing
n near the dashed line on Fig. 16 will lead to slower changes in a1, a2 and ϕ and
consequently, slower energy transfer. For a certain energy level (a fixed r), the higher
n, the faster the amplitude modulation and energy transfer. Although it might seem
that choosing n very large is a good solution when attempting to induce energy transfer
to the controller, do note that the higher n, the faster energy is also transferred back.
Depending on the energy dissipation strategy, n will have a maximal useful value.
A higher n and faster energy transfer will make it difficult to avoid energy being
transferred back to the host system.

5.5.2 Beat quality

An example of an energy dissipation strategy is found in [9] and [30], where controller
damping is switched on when all the energy is in the controller and thus energy
transfer back to the host system is avoided. To be able to implement this, the timing is
important. One must be able to track the envelope of the time signals online to estimate
the instant when the envelope of the response of the host system is minimal, meaning
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the vibration energy is mostly in the controller and damping should be switched on.
A higher beat quality makes the envelope tracking more straightforward. Therefore,
there is another trade-off, which relates to the beat quality BQ.

Beat quality can be defined as follows [30].

BQ =
Tenv

Tcarr
(20)

Here, Tenv is the period of the modulation of the response, or twice the period of
a1 or a2. Tcarr = 2π

ω is the carrier period, or the period of the fast oscillations. Low
and high beat quality is illustrated in Fig. 17. In Fig. 17a, the beat quality is two,
which intuitively is not an advantageous situation. The beat phenomenon cannot be
noticed and it is hard to speak of energy moving to and from the controller. In Fig.
17b however, there is a clear beat phenomenon. If the host shows this response, there
is clear energy transfer to the controller and back. The ideal beat quality depends on
the specific control objective. It is clear in any case that beat quality must be taken
into account when tuning the control parameter n.

(a) BQ = 2 (b) BQ = 10

Fig. 17: Illustration of beat quality, with time signals in black and amplitude modu-
lation in a blue dashed line

The beat quality is also a measure of how easily one can detect the moment at which
the energy flow between the host system and controller reverses direction. Tracking the
amplitude modulation online requires a certain amount of information and becomes
easier the higher the beat quality is. This tracking can be important, depending on
the applied energy dissipation strategy.

To illustrate the relationship between the beat quality and n, the values of BQ
are depicted for different values for r and n on the bifurcation diagram in Fig. 18.
The beat quality is only defined if energy is exchanged, corresponding to the area
above the dashed line on the figure. For a specific r, the higher n, the lower the beat
quality. The cases where BQ = 10, are indicated with a light grey line. The cases
for low n (n ≳ nc) and r have a very high beat quality. This is due to the very slow
envelope dynamics for trajectories near the saddle point. Note that for n ≤ 0.02 and
r < 0.5, BQ is higher than 80 and not captured by the scale shown. However, the exact
values are not important, as these cases are not interesting from a control perspective.

21



Fig. 18: Bifurcation diagram, with energy transfer threshold value nc indicated in a
dashed blue line and beat quality indicated in colour

(a) A: n = 0.076, BQ ≈ 28 (b) B: n = 0.19, BQ ≈ 10 (c) C: n = 0.29, BQ ≈ 6

Fig. 19: Time responses for cases A, B and C shown in Fig. 18 for r = 1 and different
values of n

Considering the envelope reconstruction and energy dissipation strategies, this plot
can offer insight into the controller tuning to ensure useful energy transfer.

To illustrate this, three cases are indicated on Fig. 18 with A, B and C. The cases
correspond to r = 1 and n = 0.076, 0.19 and 0.29, respectively. The time responses
for these cases are shown in Fig. 19. In case A, Fig. 19a, the envelope modulation is
slow. It takes about 50s for the energy to transfer to the controller. However, the beat
quality is very high, facilitating online envelope tracking. In case of B, Fig. 19b, it takes
approximately one-third of the time to complete the energy transfer to the controller.
Here, the beat quality is approximately 10. In case C, the energy is transferred the
fastest, however, beat quality is low (approximately 6). This could cause difficulty in
detecting the moment at which the energy flow reverses direction in real-time. A lower
value for n, leads to a higher beat quality.
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5.5.3 Practical considerations

First, robustness is considered from the point of view of parameter variations within
the arctangent stiffness model K(x) = γ arctan a

γx+ ϵax. Further, model mismatch is
discussed, where the softening stiffness law deviates from the arctangent expression.

Simulations have been done to observe the effect of parameter variation in the non-
linear stiffness of the host system. The slope a of the host system’s stiffness is scaled by
f , while the controller remains unchanged. Figures 20a and 20c show time responses
for host systems with decreased and increased stiffness parameter a, respectively. Com-
pared to the original case in Fig. 20b, one can note that there is still considerable
energy transfer, but the envelope of the amplitude of q no longer goes to zero.

(a) f = 0.9 (b) f = 1 (c) f = 1.1

Fig. 20: Time responses for systems with imperfect parameter estimation of stiffness
characteristic of host system, for q̇(0) = 2 and n = 0.2

Regarding model mismatch, the case study in Section 6 will show that the proposed
controller can also handle a different softening stiffness characteristic. However, further
investigation is needed to determine to what extent the stiffness characteristic can
differ from the proposed one, while remaining efficient.

6 Numerical example

The goal of this section is to illustrate the potential of the VMS control strategy using
a numerical example. First, the insights into the control parameter n are implemented
to induce energy transfer between the host and the controller systems. Afterwards, to
prevent energy from flowing back to the host, a strategic damping term is added to
the controller dynamics, effectively mitigating the vibrations.

6.1 Problem statement

The case study is based on the setup in [31]. The host is a compliant robotic
end-effector, modelled as a mass-spring-damper system with softening stiffness. The
equations of motion of the controlled system are given by Eq. (2), with parameters
m = 0.125kg, γ = 1N , a = 80N

m and ϵ = 10−2. The initial velocity, caused by a

collision, is dx
dt (0) = 0.6m

s .
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6.2 Tuning of control parameter n

To be able to use the dimensionless analysis, the dimensionless initial condition is

calculated q̇(0) =
√
am
γ ẋ(0) = 1.8974 = r. Knowing the expected value of r, the

bifurcation diagram of Fig. 18 is used to tune n. The relevant parameters, r, nc and
nb, for the considered initial condition are indicated in Fig. 21 and their numerical
values are r∗ = 1.8974, n∗

c = 0.118 and n∗
b = 0.205.

Fig. 21: Bifurcation diagram with relevant parameters for controller tuning

The two trade-offs that have been discussed are speed of energy transfer and beat
quality. By choosing n = n∗

c , the highest BQ is achieved, while still ensuring energy
transfer. However, if the initial impulse is a little higher (r > r∗), energy transfer does
no longer occur for this choice of n and the speed of energy transfer is very slow for
trajectories near the saddle point.

The trade-off is clear; the higher n, the lower the beat quality, but the faster
energy is transferred to the controller. For these reasons, a value of n = 0.18 is chosen,
corresponding to BQ ≈ 10.

These values of the nondimensional system correspond to following control law
with control force Fc: {

Fc = −N dy
dt

md2y
dt2 + γ arctan a

γ y + ϵay = N dx
dt

(21)

where the controller parameters are given by

m = 0.125 kg

γ = 1N

a = 80
N

m

ϵ = 0.01
N

m

N =
√
am n = 0.5692

Ns

m

(22)
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This choice for n, leads to the behaviour in Fig. 23a.

6.3 Dissipation strategy

Having achieved this energy transfer and beat quality, the next step is to dissipate
the energy before it is sent back to the host system. The authors acknowledge that an
in-depth investigation is required and a simple example is given merely to illustrate
the possibilities.

Damping is added to the controller dynamics.{
md2x

dt2 + γ arctan a
γx+ ϵax = −N dy

dt + δF

md2y
dt2 + C(x, ẋ)dydt + γ arctan a

γ y + ϵay = N dx
dt

, (23)

A conceptual characteristic for the damping factor is proposed, as shown in Figure
22. The damping factor C(x, ẋ) is chosen as a function of the energy in the host system
Eh.

C(x, ẋ) =
Cmax

1 + ed(Eh(x,ẋ)−b)

Eh(x, ẋ) =
m

2
ẋ2 + γ

(
x arctan(

ax

γ
)− γ

log(a2x2 + γ2)

2a

)
+

ϵax2

2

(24)

The parameters are chosen as follows Cmax = 2.2768, d = 5 · 103 en b = 2.025 · 10−3.
When most energy is in the host system, low damping allows for energy to flow towards
the virtual system, while when the host’s energy is low, the damping factor is high
and dissipates energy. As such the energy flow back to the host system is inhibited.

Fig. 22: Controller damping factor based on energy in host system

6.4 Results

The results of the tuning of n without and with dissipation strategy are shown in Figure
23. These figures also clarify the different steps in this control strategy. First, energy
transfer between host and controller is induced (Fig. 23a), then, dissipation is added
(Fig. 23b). The authors recognise that an in-depth investigation and optimisation of
the energy dissipation strategy is needed, however, this is outside the scope of this
work.
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(a) Results of tuned controller for
energy transfer

(b) Results of tuned controller with
energy dissipation

Fig. 23: Resulting time responses of host system and controller coordinate, for con-
troller tuned to example system from [31]

6.5 Deviation of softening stiffness model

The model of the nonlinear stiffness of the host system given in [31], differs from the
arctangent nonlinearity considered in this work. To observe how the control strategy
deals with this deviating stiffness of the host, simulations are done with the following
nonlinear elastic force characteristic.

K0(x) = k
(L0 −

√
H2 + x2)x√

H2 + x2
(25)

Here k, L0 and H are fixed constants. In the regarded case, k = 50N
m , L0 = 0.07m and

H = 0.028m [31]. Note that the controller remains unchanged compared to the above
results, while the host system has a new stiffness expression K0(x). The comparison
of the nonlinear stiffness K0(x) (Eq. (25)) and the arctangent stiffness considered in
Sections 6.1-6.4 is shown in Fig. 24. Note that K0 is still a softening stiffness, however,
the monotonicity is lost.

Fig. 24: Comparison of arctangent stiffness characteristic and K0

The resulting time responses are shown in Fig. 25. These results show that the
proposed control strategy can deal with the different softening nonlinearity.
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(a) Results of tuned controller for
energy transfer

(b) Results of tuned controller with
energy dissipation

Fig. 25: Resulting time responses of host system and controller coordinate, for con-
troller tuned to example system from [31], with host stiffness defined by Eq. (25)

7 Conclusion

This work investigated the active vibration control of a nonlinear system with a soft-
ening spring, excited by an impulsive load. The Virtual Mechanical System control law
was applied, which aims to control energy flows. This control law describes an auxil-
iary system, which is coupled to the host skew-symmetrically with coupling parameter
n. This coupling, typical for gyroscopic systems, creates a 90° phase shift between the
host system and controller system, and facilitates energy transfer. Due to the passiv-
ity, semi-analytical techniques can be employed. By analysing the slow flow behaviour
of the controlled system, insight into the tuning of n is achieved. Bifurcations in the
system of slow flow equations are translated into a threshold value nc for energy trans-
fer to the controller. Further, the influence of varying n (> nc) on the speed of energy
transfer and the beat quality is discussed. Using these insights, n can be tuned to
ensure efficient energy transfer from the system towards the controller, whereafter,
different strategies for dissipation in the controller can be applied. This way, vibra-
tion control is achieved. The practical example provided illustrates the tuning strategy
in a practical manner. Furthermore, the results with a different nonlinear stiffness
characteristic illustrate the broader applicability of the proposed approach.

Ultimately, the analytical insights into the controller tuning allow for a profound
understanding of the energy transfer phenomenon for systems with softening stiff-
ness and deepen our understanding of the VMS control law and its skew-symmetric
coupling.
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[6] Chan-Zheng, C., Muñoz-Arias, M., Scherpen, J.M.A.: Tuning rules for passivity-
based integral control for a class of mechanical systems. IEEE Control Systems
Letters 7, 37–42 (2023) https://doi.org/10.1109/LCSYS.2022.3186618

[7] Feliu, V., Pereira, E., Dı́az, I.M.: Passivity-based control of single-link flexible
manipulators using a linear strain feedback. Mechanism and Machine Theory 71,
191–208 (2014) https://doi.org/10.1016/j.mechmachtheory.2013.07.009

[8] Liu, L.-Y., Yuan, K.: Noncollocated passivity-based pd control of a single-link
flexible manipulator. Robotica 21(2), 117–135 (2003) https://doi.org/10.1017/
S0263574702004538

[9] Juchem, J., Geyskens, S., Dekemele, K., Loccufier, M.: A virtual mechanical sys-
tem control law for energy transfer towards a single actuation point in n dof
buildings. Engineering Structures 302, 117493 (2024) https://doi.org/10.1016/j.
engstruct.2024.117493

[10] Luyckx, L. and Loccufier, M. and Noldus, E.: On the design of nonlinear con-
trollers for Euler-Lagrance systems. Nonlinear Dynamics and Systems Theory
1(1), 97–107 (2001)

[11] Li, X., Sun, K., Liu, H.: A modified constant-torque spring hinge toward syn-
chronous deployment. Advances in Space Research 70(11), 3301–3310 (2022)
https://doi.org/10.1016/j.asr.2022.08.005

28

https://doi.org/10.1142/S0218127404011624
https://doi.org/10.1080/0020718508961163
https://doi.org/10.1002/rnc.6584
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/rnc.6584
https://doi.org/10.1051/meca/2021050
https://doi.org/10.1109/LCSYS.2022.3186618
https://doi.org/10.1016/j.mechmachtheory.2013.07.009
https://doi.org/10.1017/S0263574702004538
https://doi.org/10.1017/S0263574702004538
https://doi.org/10.1016/j.engstruct.2024.117493
https://doi.org/10.1016/j.engstruct.2024.117493
https://doi.org/10.1016/j.asr.2022.08.005


[12] Li, X., Sun, K., Liu, H.: A modified constant-torque spring hinge toward syn-
chronous deployment. Advances in Space Research 70(11), 3301–3310 (2022)
https://doi.org/10.1016/j.asr.2022.08.005

[13] Liu, C.-H., Chung, F.-M., Ho, Y.-P.: Topology optimization for design of a
3d-printed constant-force compliant finger. IEEE/ASME Transactions on Mecha-
tronics 26(4), 1828–1836 (2021) https://doi.org/10.1109/TMECH.2021.3077947

[14] Wang, J.-Y., Lan, C.-C.: A constant-force compliant gripper for handling objects
of various sizes. Journal of Mechanical Design 136(7), 071008 (2014) https://doi.
org/10.1115/1.4027285

[15] Lo, C.-W., Chang, Y., Wang, M.-L., Lee, J.-J.: Design of a large stroke compli-
ant gripping mechanism for constant-force applications. Journal of the Brazilian
Society of Mechanical Sciences and Engineering 46(6), 363 (2024) https://doi.
org/10.1007/s40430-024-04929-4

[16] Ding, B., Zhao, J., Li, Y.: Design of a spatial constant-force end-effector
for polishing/deburring operations. The International Journal of Advanced
Manufacturing Technology 116(11), 3507–3515 (2021) https://doi.org/10.1007/
s00170-021-07579-1

[17] Dekemele, K., Habib, G.: Inverted resonance capture cascade: modal interactions
of a nonlinear energy sink with softening stiffness. Nonlinear Dynamics 111(11),
9839–9861 (2023) https://doi.org/10.1007/s11071-023-08423-9

[18] Zhang, S., Zhou, J., Ding, H., Wang, K., Tan, D.: Theoretical investigation on
vibration mitigation in a system with fractional nonlinear energy sinks. Nonlinear
Dynamics (2024) https://doi.org/10.1007/s11071-024-10557-3

[19] Qaiser, Z., Johnson, S., Rehman, T., Shun, B., Zhou, Y.: Order-of-magnitude
increased range of constant force adjustment via section optimization. Mech-
anism and Machine Theory 205, 105835 (2025) https://doi.org/10.1016/j.
mechmachtheory.2024.105835

[20] Li, J., Rehman, T.U., Qaiser, Z., Johnson, S.: Design optimization and vali-
dation of compliant bidirectional constant force mechanisms. Mechanism and
Machine Theory 195, 105593 (2024) https://doi.org/10.1016/j.mechmachtheory.
2024.105593

[21] Phan, T.-V., Pham, H.-T.: Design and optimization of a large-stroke compli-
ant constant-torque mechanism. Journal of Technical Education Science, 93–100
(2022) https://doi.org/10.54644/jte.68.2022.1098

[22] Habib, G., Kerschen, G.: A principle of similarity for nonlinear vibration
absorbers. Physica D: Nonlinear Phenomena 332, 1–8 (2016) https://doi.org/10.
1016/j.physd.2016.06.001

29

https://doi.org/10.1016/j.asr.2022.08.005
https://doi.org/10.1109/TMECH.2021.3077947
https://doi.org/10.1115/1.4027285
https://doi.org/10.1115/1.4027285
https://doi.org/10.1007/s40430-024-04929-4
https://doi.org/10.1007/s40430-024-04929-4
https://doi.org/10.1007/s00170-021-07579-1
https://doi.org/10.1007/s00170-021-07579-1
https://doi.org/10.1007/s11071-023-08423-9
https://doi.org/10.1007/s11071-024-10557-3
https://doi.org/10.1016/j.mechmachtheory.2024.105835
https://doi.org/10.1016/j.mechmachtheory.2024.105835
https://doi.org/10.1016/j.mechmachtheory.2024.105593
https://doi.org/10.1016/j.mechmachtheory.2024.105593
https://doi.org/10.54644/jte.68.2022.1098
https://doi.org/10.1016/j.physd.2016.06.001
https://doi.org/10.1016/j.physd.2016.06.001


[23] Habib, G., Kádár, F., Papp, B.: Impulsive vibration mitigation through a non-
linear tuned vibration absorber. Nonlinear Dynamics 98 (2019) https://doi.org/
10.1007/s11071-019-05312-y

[24] Manevich, A.I., Manevitch, L.I.: The Mechanics of Nonlinear Systems with Inter-
nal Resonances. Published by Imperial College Press and distributed by World
Scientific Publishing Co., Singapore (2005). https://doi.org/10.1142/p368

[25] Quinn, D.D., Gendelman, O., Kerschen, G., Sapsis, T.P., Bergman, L.A., Vakakis,
A.F.: Efficiency of targeted energy transfers in coupled nonlinear oscillators asso-
ciated with 1:1 resonance captures: Part i. Journal of Sound and Vibration 311(3),
1228–1248 (2008) https://doi.org/10.1016/j.jsv.2007.10.026

[26] Petit, F., Loccufier, M., Aeyels, D.: The energy thresholds of nonlinear
vibration absorbers. Nonlinear Dynamics 74 (2013) https://doi.org/10.1007/
s11071-013-1003-8

[27] Genta, G.: Dynamics of Rotating Systems. Springer, New York, NY (2005)

[28] Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to
Physics, Biology, Chemistry, and Engineering. CRC Press, Taylor & Francis
Group, Boca Raton, FL 33487-2742 (2018). https://books.google.be/books?id=
A0paDwAAQBAJ

[29] Wiebe, R., Virgin, L.: A heuristic method for identifying chaos from frequency
content. Chaos (Woodbury, N.Y.) 22, 013136 (2012) https://doi.org/10.1063/1.
3675624

[30] Juchem, J.: The virtual mechanical system controller: Vibration mitigation for
underactuated mechanical systems. Phd thesis, Ghent University, Ghent, BE
(September 2024)

[31] Tommasino, D., Cipriani, G., Doria, A., Rosati, G.: Effect of end-effector com-
pliance on collisions in robotic teleoperation. Applied Sciences 10(24) (2020)
https://doi.org/10.3390/app10249077

30

https://doi.org/10.1007/s11071-019-05312-y
https://doi.org/10.1007/s11071-019-05312-y
https://doi.org/10.1142/p368
https://doi.org/10.1016/j.jsv.2007.10.026
https://doi.org/10.1007/s11071-013-1003-8
https://doi.org/10.1007/s11071-013-1003-8
https://books.google.be/books?id=A0paDwAAQBAJ
https://books.google.be/books?id=A0paDwAAQBAJ
https://doi.org/10.1063/1.3675624
https://doi.org/10.1063/1.3675624
https://doi.org/10.3390/app10249077

	Introduction
	Model
	Dimensionless system

	Complexification-averaging method
	Complexification
	Averaging
	Transformation to polar coordinates
	Validity of slow flow equations
	Chaotic nature of system


	Bifurcation analysis
	Fixed points
	Case 1: = 2
	Case 2: = -2

	Reversibility
	Phase plots
	Impulsive orbits

	Results and discussion
	n < nc
	nc < n < nb
	n > nb
	Bifurcation diagram
	Discussion on controller tuning
	Speed of energy transfer
	Beat quality
	Practical considerations


	Numerical example
	Problem statement
	Tuning of control parameter n
	Dissipation strategy
	Results
	Deviation of softening stiffness model

	Conclusion
	Acknowledgements


